Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 2.5

Homework problems copyright (c)2000-2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt)

If the graph of f is as shown below, then at what points does f have a removable discontinuity? (Click the image for a larger view.)

Enter removable discontinuities from left to right. Use only those answer boxes that you need; leave the rest blank.
first discontinuity:
$x=$ \qquad
second discontinuity:
$x=$ \qquad
third discontinuity:
$x=$
fourth discontinuity:
$x=$ \qquad
Redefine f at each of the removable discontinuities so as to make it continuous there. Again, use only those answer boxes that you need.

At the first discontinuity,
define $f(x)=$ \qquad
At the second discontinuity,
define $f(x)=$ \qquad
At the third discontinuity,
define $f(x)=$ \qquad
At the fourth discontinuity, define $f(x)=$

2. (1 pt)

Consider the function
$f(x)= \begin{cases}4 x & \text { if } x<0 \\ x^{4} & \text { if } x \geq 0\end{cases}$
Choose the answer which best describes the continuity of this function.
A. The function has a removable discontinuity at 0 , but is continuous on the rest of the real line.
B. The function is continuous on the real line.
C. The function is a composition of two continuous functions, and is therefore continuous on the real line.
D. The function is unbounded and therefore cannot be continuous.
E. The function has a continuous extension to $x=0$.
3. $(1 \mathrm{pt})$

Consider the function
$f(x)= \begin{cases}x^{3} & \text { if } x \leq 1 \\ 0.569 & \text { if } x>1\end{cases}$
Choose the answer which best describes the continuity of this function.
A. The function is a composition of two continuous functions, and is therefore continuous on the real line.
B. The function is discontinuous at $x=1$, but continuous on the rest of the real line.
C. The function is unbounded and therefore cannot be continuous.
D. The function has a removable discontinuity at 1 , but is continuous on the rest of the real line.
E. The function has a continuous extension to $x=1$.
4. (1 pt)

Consider the function $f(x)=\frac{x^{2}-2}{x^{4}-6 x^{2}+8}$. How should $f(x)$ be defined at $x=\sqrt{2}$ to be continuous there? Give a formula for the continuous extension of f that includes $\pm \sqrt{2}$ in its domain.
$F(x)=$

5. (1 pt)

Consider the function
$g(x)= \begin{cases}x-m & \text { if } x<2 \\ 1-m x & \text { if } x \geq 2\end{cases}$
Find m so that $g(x)$ is continuous on the real line.
$m=$
6. (1 pt)

If $f(x)=x^{5}+4 x-1$, does f have a zero between $x=0$ and $x=1$?
A. no
B. yes

What theorem tells you that this is the case?
A. Mean-Value Theorem
B. Two-Sided Limit Theorem
C. Squeeze Theorem
D. Max-Min Theorem
E. Intermediate-Value Theorem
7. (1 pt)

If $f(x)=\frac{3 x-30}{x^{2}-7 x-30}$, then at what points does f have a discontinuity? Enter discontinuities from smallest to greatest. Use only those answer boxes that you need; leave the rest blank. first discontinuity:
$x=$ \qquad
second discontinuity:
$x=$ \qquad
third discontinuity:
$x=$ \qquad
fourth discontinuity:
$x=$ \qquad
8. $(1 \mathrm{pt})$

If $f(x)=\frac{10 x}{\left|x^{2}-8 x\right|}$, then at what points does f have a discontinuity? Enter discontinuities from smallest to greatest. Use only those answer boxes that you need; leave the rest blank.
first discontinuity:
$x=$ \qquad
second discontinuity:
$x=$
third discontinuity:
$x=$ \qquad
fourth discontinuity:
$x=$

$$
\underline{ـ}
$$

9. $(1 \mathrm{pt})$

Consider the function
$f(x)= \begin{cases}2 x^{2}-4 & \text { if } x<0 \\ x-4 & \text { if } x \geq 0\end{cases}$
Is f right continuous? (\mathbf{Y} or \mathbf{N})
Is f left continuous? (\mathbf{Y} or \mathbf{N})
Is f continuous? $(\mathbf{Y}$ or $\mathbf{N})$
10. (1 pt)

On which of the following intervals is $f(x)=\frac{1}{\sqrt{x-8}}$ continuous?
A. $[8,+\infty)$
B. $(8,+\infty)$
C. $[1,8)$
D. $(-\infty,+\infty)$
11. (1 pt)

Consider the following function:
$f(x)= \begin{cases}c x+2.1 & \text { if } x \leq 6 \\ c x^{2}-2.1 & \text { if } x>6\end{cases}$
Which of the following is true?
A. f is continuous
B. f is discontinuous everywhere
C. f has one removable discontinuity
D. f has infinitely many discontinuities

12. (1 pt)

Let
$f(x)= \begin{cases}c x+2 & \text { if } x \leq 5 \\ c x^{2}-2 & \text { if } x>5\end{cases}$
For what value of c is the fucntion f continuous on $(-\infty, \infty)$?
$\mathrm{c}=$
13. (1 pt)

If $f(x)=\frac{7 x+11}{x^{3}-23 x^{2}+151 x-273}$, then at what points does f have a discontinuity? Enter discontinuities from smallest to greatest. Use only those answer boxes that you need; leave the rest blank.
first discontinuity:
$x=$ \qquad
second discontinuity:
$x=$ \qquad
third discontinuity:
$x=$
fourth discontinuity:
$x=$ \qquad

