Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 2.5

Homework problems copyright ©2000–2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt)

If the graph of f is as shown below, then at what points does fhave a removable discontinuity? (Click the image for a larger view.)

Enter removable discontinuities from left to right. Use only those answer boxes that you need; leave the rest blank. first discontinuity:

x =

second discontinuity: x =

third discontinuity:

x =

fourth discontinuity:

x =

Redefine f at each of the removable discontinuities so as to make it continuous there. Again, use only those answer boxes that you need.

At the first discontinuity,

- define f(x) =___ At the second discontinuity,
- define $f(x) = _$
- At the third discontinuity, define f(x) =.

At the fourth discontinuity,

define f(x) = -

Consider the function

$$f(x) = \begin{cases} 4x & \text{if } x < 0\\ x^4 & \text{if } x \ge 0 \end{cases}$$

Choose the answer which best describes the continuity of this function.

- A. The function has a removable discontinuity at 0, but is continuous on the rest of the real line.
- B. The function is continuous on the real line.
- C. The function is a composition of two continuous functions, and is therefore continuous on the real line.
- D. The function is unbounded and therefore cannot be continuous.
- E. The function has a continuous extension to x = 0.

3. (1 pt)

Consider the function (3 $if_{r} < 1$

$$f(x) = \begin{cases} x & \text{if } x \ge 1\\ 0.569 & \text{if } x > 1 \end{cases}$$

Choose the answer which best describes the continuity of this function.

- A. The function is a composition of two continuous functions, and is therefore continuous on the real line.
- B. The function is discontinuous at x = 1, but continuous on the rest of the real line.
- C. The function is unbounded and therefore cannot be continuous.
- D. The function has a removable discontinuity at 1, but is continuous on the rest of the real line.
- E. The function has a continuous extension to x = 1.

4. (1 pt)

Consider the function $f(x) = \frac{x^2 - 2}{x^4 - 6x^2 + 8}$. How should f(x) be defined at $x = \sqrt{2}$ to be continuous there? Give a formula for the continuous extension of f that includes $\pm \sqrt{2}$ in its domain. $F(x) = _$

5. (1 pt) Consider the function

 $g(x) = \begin{cases} x - m & \text{if } x < 2 \end{cases}$

1 - mx if $x \ge 2$

Find *m* so that g(x) is continuous on the real line.

m =**6.** (1 pt)

If $f(x) = x^5 + 4x - 1$, does f have a zero between x = 0 and x = 1?

A. no

B. yes

What theorem tells you that this is the case?

A. Mean-Value Theorem

B. Two-Sided Limit Theorem

1

C. Squeeze Theorem

D. Max-Min Theorem

E. Intermediate-Value Theorem

7. (1 pt)

If $f(x) = \frac{3x-30}{x^2-7x-30}$, then at what points does *f* have a discontinuity? Enter discontinuities from smallest to greatest. Use only those answer boxes that you need; leave the rest blank.

first discontinuity:

x = -

fourth discontinuity:

x =

8. (1 pt)

If $f(x) = \frac{10x}{|x^2 - 8x|}$, then at what points does *f* have a discontinuity? Enter discontinuities from smallest to greatest. Use only

those answer boxes that you need; leave the rest blank.

first discontinuity: $x = _$

second discontinuity:
x =
third discontinuity:
x =
fourth discontinuity:
x =

9. (1 pt)

Consider the function $f(x) = \begin{cases} 2x^2 - 4 & \text{if } x < 0 \\ x - 4 & \text{if } x \ge 0 \end{cases}$ Is *f* right continuous? (**Y** or **N**) $\overline{\text{Is } f \text{ left continuous? ($ **Y**or**N** $)}}$ $\overline{\text{Is } f \text{ continuous? ($ **Y**or**N** $)}}$

Generated by the WeBWorK system ©WeBWorK Team, Department of Mathematics, University of Rochester

10. (1 pt)

On which of the following intervals is $f(x) = \frac{1}{\sqrt{x-8}}$ continuous?

ous:

A. $[8, +\infty)$ B. $(8, +\infty)$ C. [1,8)D. $(-\infty, +\infty)$

11. (1 pt)

Consider the following function:

$$f(x) = \begin{cases} cx + 2.1 & \text{if } x \le 6\\ cx^2 - 2.1 & \text{if } x > 6 \end{cases}$$

Which of the following is true?

A. *f* is continuous

B. *f* is discontinuous everywhere

C. *f* has one removable discontinuity

D. *f* has infinitely many discontinuities

12. (1 pt)

Let

$$f(x) = \begin{cases} cx+2 & \text{if } x \le 5 \\ cx^2 - 2 & \text{if } x > 5 \end{cases}$$

 $\int cx^2 - 2 \quad \text{if } x > 5$ For what value of c is the function f continuous on $(-\infty,\infty)$?

13. (1 pt)

c = _

x =

If $f(x) = \frac{7x+11}{x^3-23x^2+151x-273}$, then at what points does f have a discontinuity? Enter discontinuities from smallest to greatest. Use only those answer boxes that you need; leave the rest blank.

first discontinuity:

$$x = \underline{\qquad}$$
second discontinuity:

$$x = \underline{\qquad}$$
third discontinuity:

$$x = \underline{\qquad}$$
fourth discontinuity: