Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 2.9

Homework problems copyright ©2000-2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt)

Find the derivative of the trigonometric function $y=\cos (7 \sqrt{x})$. $y^{\prime}=$ \qquad

$$
\text { 2. }(1 \mathrm{pt})
$$

Find the derivative of $y=\cos (2 \sin x)$.

$$
y^{\prime}=
$$

3. $(1 \mathrm{pt})$

Find the derivative of $y=8 \csc \left(\frac{10}{x}\right)$.

$$
y^{\prime}=
$$

A. $-8 \csc \left(\frac{10}{x}\right) \cot \left(\frac{10}{x}\right)$
B. $\frac{80}{x^{2}} \csc \left(\frac{10}{x}\right) \cot \left(\frac{10}{x}\right)$
C. $\frac{80}{x^{2}} \csc x \cot x$
D. $-8 \csc \left(\frac{80}{x^{2}}\right) \cot \left(\frac{80}{x^{2}}\right)$
E. None of these.
4. (1 pt)

Find the derivative of $y=\tan (-7 x) \cot (-7 x)$. Simplify your answer completely. Use either $\frac{1}{\tan x}$ or $\frac{\cos x}{\sin x}$ to express $\cot x$ and $\frac{1}{\sin x}$ to express $\csc x$.
$y^{\prime}=$ \qquad
5. (1 pt)

What is the derivative of $f(t)=10 t \cos t-10 \sin t$?

$$
f^{\prime}(t)=
$$

\qquad

6. $(1 \mathrm{pt})$

Find the derivative of $g(t)=\sqrt{\frac{3 \cos t}{t}}$.

$$
g^{\prime}(t)=
$$

7. (1 pt)

Find the derivative of $f(t)=\cos (\tan (\sin t))$.

$$
f^{\prime}(t)=
$$

8. (1 pt)

Find equations for lines that are tangent and normal to the curve $y=\cos \left(7 x+\frac{\pi}{2}\right)$ at the point $(0,0)$.

Line tangent to curve:
$y=$ \qquad
Line normal to curve:
$y=$ \qquad
9. $(1 \mathrm{pt})$

Let $y=\sin \left(2 x^{2}\right)$. Find each of the following.
$y^{\prime}=$
$y^{\prime \prime}=$
$y^{\prime \prime \prime}=$ \qquad
10. (1 pt)

Let $y=\tan (-9 x)$. Find each of the following.
$y^{\prime}=$
$y^{\prime \prime}=$
\qquad
Express $y^{\prime \prime}$ in terms of y
$y^{\prime \prime}=$
$=\underline{\square}$
11. (1 pt)

Let $f(x)=\sec (x)$ and $g(x)=f^{\prime}(x)$. What is $g^{\prime}(x)$?

$$
g^{\prime}(x)=
$$

12. (1 pt)

Sisyphus, the great ruler of Corinth known for his trickery and deceit, was captured and punished in Tartalus. When captured, his punishment was to roll a heavy stone to the top of a hill. Upon reaching the top, the stone would invariably slip down the other side, forcing Sisyphus to begin anew. If the height of the stone at time t can be described by the function $f(t)=19(\sin (t))^{2}$ cubits, what function describes the rate of change in the height of the stone?
cubits / second
13. (1 pt)

Find the derivative of $19 \cos (\cos (6 x))$ at $x=\frac{\pi}{2}$.
14. (1 pt)

Find the derivative of $\sqrt{\cos ^{2}(5 x)+\sin ^{2}(5 x)}$.

