Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 2.13

Homework problems copyright (c)2000-2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt)

Use Newton's method to approximate $\sqrt{11}$ by approximating the solution to the equation $x^{2}-11=0$.

Give the first 5 approximations to the root of the equation using initial approximation $x_{0}=\frac{7}{2}$. Do the approximation for x_{1} by hand, giving the numerator and denominator of the result. Reduce the fraction as much as possible. Use an applet or a computer algebra system such as Maple to calculate the remaining approximations.
$x_{0}:$ Numerator $=$ \qquad Denominator $=$ \qquad
$x_{1}:$ Numerator $=$ \qquad Denominator $=$ \qquad
$x_{2}=$
$x_{3}=$ \qquad
$x_{4}=$ \qquad
$x_{5}=$

2. (1 pt)

Use Newton's method to approximate $\sqrt{46}$ by working with the equation $x^{2}-46=0$. Give the first 3 iterations, starting with $x_{0}=7$.
$x_{1}=$
$x_{2}=$
$x_{3}=$
3. (1 pt)

Use Newton's method to approximate the solution to the equation $\sin (x)=4-x$. Give the first 6 iterations, starting with $x_{0}=4$.
$x_{1}=$ \qquad
$x_{2}=$ \qquad
$x_{3}=$
$x_{4}=$
$x_{5}=$
$x_{6}=$

4. (1 pt)

Use Newton's method to approximate to four decimal places the solution to the equation $\cos (4 x)=x^{2}$. How many roots are there? Enter the roots in increasing order. Use only as many answer boxes as you need; leave the rest blank.

First root $=$ \qquad
Second root $=$ \qquad
Third root $=$ \qquad
Fourth root $=$

5. (1 pt)

Use Newton's method to approximate a solution to the equation $x^{3}-6=0$. Give the first three iterations, starting with $x_{0}=3$.
$x_{1}=$
$x_{2}=$
$x_{3}=$

$$
\overline{\text { 6. }(1 \mathrm{pt})}
$$

Use Newton's method to approximate a solution to the equation $x^{4}-x^{3}+7 x=0$. Give the first four iterations, starting with $x_{0}=3.5$.
$x_{1}=$
$x_{2}=$
\qquad
\qquad
$x_{3}=$ \qquad
$x_{4}=$

> 7. (1 pt)

Use Newton's method to approximate $\sqrt{24}$. Give the first four iterations, starting with $x_{0}=12$.

$$
\begin{aligned}
& x_{1}=\square \\
& x_{2}= \\
& x_{3}= \\
& x_{4}= \\
& =
\end{aligned}
$$

8. (1 pt)

Use Newton's method to approximate $\sqrt[3]{35}$. Give the first four iterations, starting with $x_{0}=8.75$.
$x_{1}=$
$x_{2}=$ \qquad
$x_{3}=$ \qquad
$x_{4}=$
9. $(1 \mathrm{pt})$

Use Newton's method to approximate $\sqrt[4]{25}$. Give the first four iterations, starting with $x_{0}=\frac{25}{4}$.
$x_{1}=$
$x_{2}=$
$x_{3}=$
$x_{4}=$
10. (1 pt)

Work out an exact formula for t_{43} in terms of t_{1} for Newton's Method applied to the function $f(t)=t^{2}$. Let $x=t_{1}$ and write your answer in terms of x.
$t_{43}=$ \qquad

