Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 2.13

Homework problems copyright ©2000–2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt)

Use Newton's method to approximate $\sqrt{11}$ by approximating the solution to the equation $x^2 - 11 = 0$.

Give the first 5 approximations to the root of the equation using initial approximation $x_0 = \frac{7}{2}$. Do the approximation for x_1 by hand, giving the numerator and denominator of the result. Reduce the fraction as much as possible. Use an applet or a computer algebra system such as Maple to calculate the remaining approximations.

Use Newton's method to approximate $\sqrt{46}$ by working with the equation $x^2 - 46 = 0$. Give the first 3 iterations, starting with $x_0 = 7$.

 $\begin{array}{c} x_1 = \underline{\qquad} \\ x_2 = \underline{\qquad} \\ x_3 = \underline{\qquad} \end{array}$

3. (1 pt)

Use Newton's method to approximate the solution to the equation sin(x) = 4 - x. Give the first 6 iterations, starting with $x_0 = 4$.

 $\begin{array}{c}
x_1 = \underline{} \\
x_2 = \underline{} \\
x_3 = \underline{} \\
x_4 = \underline{} \\
x_5 = \underline{} \\
x_6 = \underline{} \\
\end{array}$

4. (1 pt)

Use Newton's method to approximate to four decimal places the solution to the equation $\cos(4x) = x^2$. How many roots are there? Enter the roots in increasing order. Use only as many answer boxes as you need; leave the rest blank.

Generated by the WeBWorK system	WeBWorK Team, Department of	Mathematics, University of Rochester

5. (1 pt) Use Newton's method to approximate a solution to the equation $x^3 - 6 = 0$. Give the first three iterations, starting with $x_0 = 3$. $x_1 =$ _____ $x_2 =$ _____ $x_3 =$ _____ **6.** (1 pt) Use Newton's method to approximate a solution to the equation $x^4 - x^3 + 7x = 0$. Give the first four iterations, starting with $x_0 = 3.5$. $x_1 = -- x_2 =$ _____ $x_3 =$ _____ $x_4 =$ _____ **7.** (1 pt) Use Newton's method to approximate $\sqrt{24}$. Give the first four iterations, starting with $x_0 = 12$. $x_1 =$ _____ $x_2 =$ _____ $x_3 =$ _____ $x_4 =$ _____ **8.** (1 pt) Use Newton's method to approximate $\sqrt[3]{35}$. Give the first four iterations, starting with $x_0 = 8.75$. $x_1 =$ _____ $x_2 =$ _____ $x_3 =$ _____ *x*₄ = _____ **9.** (1 pt) Use Newton's method to approximate $\sqrt[4]{25}$. Give the first four iterations, starting with $x_0 = \frac{25}{4}$ $x_1 =$ _____ $x_2 =$ _____ $x_3 =$ _____ $x_4 = -----$ **10.** (1 pt) Work out an exact formula for t_{43} in terms of t_1 for Newton's Method applied to the function $f(t) = t^2$. Let $x = t_1$ and write your answer in terms of *x*. $t_{43} =$ _____