Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 2.14

Homework problems copyright ©2000-2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt)

Find the linearization of the function $3 x^{2}+3 x$ at the point where $x=-1$.
$L(x)=$
2. (1 pt)

Find the linearization of the function $\sqrt{-4-x}$ at the point where $x=-5$.
$L(x)=$
3. (1 pt)

Find the linearization of the function $\cos (x)$ at the point where $x=-0.25 \pi$.

$$
L(x)=
$$

4. (1 pt)

Find the linearization of the function $\cos ^{2}(x)$ at the point where $x=\frac{7}{6} \pi$.

$$
L(x)=
$$

$$
\text { 5. }(1 \mathrm{pt})
$$

Use a suitable linearization to approximate $\sqrt{83}$.
Linear approximation of \sqrt{x} :
$L(x)=$
$\sqrt{83} \approx$
6. (1 pt)

Use a suitable linearization to approximate $\sqrt[4]{259}$.
Linear approximation of $\sqrt[4]{x}$:
$L(x)=$
$\sqrt[4]{259} \approx$

7. (1 pt)

Use a suitable linearization to approximate $\cos \left(\frac{13}{60} \pi\right)$.
Linear approximation of $\cos (x)$:
$L(x)=$
$\cos \left(\frac{13}{60} \pi\right) \approx$ \qquad

8. (1 pt)

In this problem you will compare two methods of estimating a square root. When you use linear approximation to approximate $\sqrt{65}$, you consider the equation $f(x)=\sqrt{x}$ and work with the tangent line to the graph of $y=f(x)$ at $(64,8)$. If you use Newton's Method, you consider $g(x)=x^{2}-65$ and look for a root of this equation.

Find a linear approximation to $f(x)$, starting at $(64,8)$ to get an approximation for $\sqrt{65}$.
$\sqrt{65} \approx$
Perform one iteration of Newton's Method for $g(x)$ starting at $x_{0}=8$.
$\sqrt{65} \approx$ \qquad
9. $(1 \mathrm{pt})$

Find the linearization of the function $-2 x^{3}+10 \sin x$ at the point where $x=\pi$.

$$
L(x)=
$$

10. (1 pt)

Find the linearization of the function $f(x)=e^{x}$ at the point where $x=5$.
$L(x)=$ \qquad

