Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 3.3

Homework problems copyright (c)2000-2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt)

Solve the following first-order differential equation:

$$
\frac{d y}{d x}=\frac{y}{5 x}
$$

Simplify your answer completely. Your answer should look like $y=f(x)$. If an arbitrary constant appears in your answer, you must enter it as an uppercase C . For example, a valid answer for the differential equation $\frac{d y}{d x}=y$ would look like $C e^{x}$.

$$
y=
$$

2. (1 pt)

Solve the following first-order differential equation:

$$
\frac{d y}{d x}=-4 x y
$$

Simplify your answer completely. Your answer should look like $y=f(x)$. If an arbitrary constant appears in your answer, you must enter it as an uppercase C. For example, a valid answer for the differential equation $\frac{d y}{d x}=y$ would look like $C e^{x}$.

$$
y=
$$

$$
\text { 3. (} 1 \mathrm{pt} \text {) }
$$

Solve the differential equation

$$
\frac{d x}{d t}=e^{x} \sin (t)
$$

Simplify your answer completely. Your answer should look like $x=f(t)$. If an arbitrary constant appears in your answer, you must enter it as an uppercase C. For example, a valid answer for the differential equation $\frac{d x}{d t}=x$ would look like $C e^{t}$.

$$
x=
$$

4. (1 pt)

Solve the differential equation:

$$
\frac{d y}{d x}-6 y=4
$$

Simplify your answer completely. Your answer should look like $y=f(x)$. If an arbitrary constant appears in your answer, you must enter it as an uppercase C . For example, a valid answer for the differential equation $\frac{d y}{d x}=y$ would look like $C e^{x}$.

$$
y=
$$

5. $(1 \mathrm{pt})$

The differential equation $m \frac{d v}{d t}=m g-k v$ expresses Newton's second law of motion, where m is the mass of a falling object, g is the acceleration due to gravity, k is a positive constant, and $v=v(t)$ is the velocity of the object at time t.

Solve the differential equation, subject to the initial condition $v(0)=0$. Choose the answer from the list below.
$v(t)=$ \qquad
A. $\frac{m g}{k}$
B. $\frac{m g}{k}+C e^{-\frac{k}{m} t}$
C. $\frac{m g}{k}-\frac{m g}{k} e^{\frac{k}{m} t}$
D. $\frac{m g}{k}\left(1-e^{-\frac{k}{m} t}\right)$
E. None of these.

What is the limit of $v(t)$ as $t \rightarrow \infty$?
Simplify your answer completely. If the limit is ∞ or $-\infty$, type infinity or -infinity in the box, without quotes.
$\lim _{t \rightarrow \infty} v(t)=$
6. (1 pt)

Solve the separable first-order differential equation:

$$
\frac{d y}{d x}=\frac{-15}{y^{2} \cos ^{2}(x)}
$$

Simplify your answer completely. Your answer should be in the form $y=f(x)$. If an arbitrary constant appears in your answer, you must enter it as an uppercase C. For example, a valid answer for the differential equation $\frac{d y}{d x}=y$ would look like $C e^{x}$.

$$
y=
$$

7. (1 pt)

Solve the differential equation:

$$
\frac{d y}{d x} \sec (4 x)=-9
$$

Simplify your answer completely. Your answer should be in the form $y=f(x)$. If an arbitrary constant appears in your answer, you must enter it as an uppercase C. For example, a valid answer for the differential equation $\frac{d y}{d x}=y$ would look like $C e^{x}$.

$$
y=
$$

8. (1 pt)

Solve the separable differential equation:
$\left(\csc (t)+\frac{2}{\sin (t)}\right) \frac{d s}{d t}=32$
Simplify your answer completely. Your answer should be in the form $s=f(t)$. If an arbitrary constant appears in your answer, you must enter it as an uppercase C. For example, a valid answer for the differential equation $\frac{d s}{d t}=s$ would look like $C e^{t}$.

$$
\begin{aligned}
& s= \\
& \text { 9. }(1 \mathrm{pt})
\end{aligned}
$$

Solve the separable differential equation:

$$
\left(\frac{w^{10}}{10 t^{9}}\right) \frac{d w}{d t}=e^{t^{10}}
$$

Simplify your answer completely. Your answer should be in the form $w=f(t)$. If an arbitrary constant appears in your answer, you must enter it as an uppercase C. For example, a valid answer for the differential equation $\frac{d w}{d t}=w$ would look like $C e^{t}$.

[^0]\qquad
10. (1 pt)

Solve the separable differential equation:
$\left(x^{-23}\right) \frac{d z}{d x}+\left(\frac{1}{2 x^{23}}\right) \frac{d z}{d x}=24$

Simplify your answer completely. Your answer should be in the form $z=f(x)$. If an arbitrary constant appears in your answer, you must enter it as an uppercase C. For example, a valid answer for the differential equation $\frac{d z}{d x}=z$ would look like $C e^{x}$. $z=$ \qquad

[^0]: $w=$

