Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 4.9

Homework problems copyright (c)2000-2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt)

Find the length of the curve $y=\frac{4}{3} x^{\frac{3}{2}}$ between $x=0$ and $x=1$. Length $=$ \qquad
2. (1 pt)

Find the length of the curve $y=\frac{x^{5}}{20}+\frac{1}{3 x^{3}}$ between $x=3$ and $x=4$.

Length $=$

3. (1 pt)

Find the length of the curve $y=2 x^{2}-\frac{\ln x}{16}$ between $x=3$ and $x=6$.

Length $=$
4. (1 pt)

What is the length of the curve $y=\ln (\sin x)$ between $x=\frac{\pi}{4}$ and $x=\frac{\pi}{3}$?
A. $\ln (\sqrt{2}-1)-\ln \frac{\sqrt{3}}{3}$ units
B. $\ln (2+\sqrt{3})-\ln (\sqrt{2}+1)$ units
C. $\ln \frac{\sqrt{3}}{3}-\ln (2-\sqrt{3})$ units
D. $\ln \frac{\sqrt{3}}{3}-\ln (\sqrt{2}-1)$ units
E. $\ln (2+\sqrt{3})-\ln \sqrt{3}$ units

5. (1 pt)

Using the trapezoid rule with 7 subintervals, evaluate the integral that defines the length of the curve $y=x^{4}$ from $x=0$ to $x=1$. You may use Maple or another computer algebra program to find the answer. Enter the answer to 6 decimal places.

Length $=$

6. (1 pt)

Using the trapezoid rule with 6 subintervals, evaluate the integral that defines the length of the arc of the ellipse $x^{2}+2 y^{2}=2$ between $(0,1)$ and $\left(1, \frac{1}{\sqrt{2}}\right)$. You may use Maple or another computer algebra program to find the answer. Enter the answer to 6 decimal places.

Length $=$

7. (1 pt)

Set up an integral for finding the arc length of the graph of $y=y^{3}-x$ from $(0,-1)$ to $(6,2)$.
variable of integration $=$ \qquad
integrand $=$
lower limit of integration $=$ \qquad
upper limit of integration $=$
8. (1 pt)

Set up an integral for finding the arc length of the graph of $2 y^{3}-7 y+2 x-8=0$ from $(4,0)$ to $(6.5,1)$.
variable of integration $=$ \qquad integrand $=$ \qquad
lower limit of integration = \qquad upper limit of integration $=$
9. (1 pt)

Let $G(x)=\frac{d}{d x} f(x)$. What quantity is described by the integral $\int_{a}^{b} \sqrt{1+G^{\prime}(x)^{2}} d x$?
A. the arclength of the curve $f(x)$ from a to b
B. the arclength of the curve $\sqrt{1+G(x)}$ from a to b
C. the arclength of the curve $G(x)$ from a to b
D. the arclength of the curve $f(x)^{2}$ from a to b
E. none of the above.
10. (1 pt)

Evaluate $\int_{-1.5}^{3} \sqrt{\frac{9}{9-x^{2}}} d x$.
11. (1 pt)

What is the integral formula for the length of the curve $y=\ln (x)$ from $\mathrm{x}=5$ to $\mathrm{x}=26$?

Length $=\int_{5}^{26} \longrightarrow d x$
Now approximate this integral using 8 circumscribed rectangles.
12. (1 pt)

What is the length of one cycle of the curve $y=\cos ^{8}(x)$, approximated using the arclength formula with 13 midpoint rectangles?

13. (1 pt)

Consider the curve $y=\sqrt{256-x^{2}}$ from $\mathrm{x}=-16$ to $\mathrm{x}=16$. Approximate its length using the arclength formula with 16 midpoint rectangles.

Calculate the exact length using geometric formulas.
14. (1 pt)

Find the length of the parabolic curve $y=\frac{x^{2}}{12}$ from $x=0$ to $x=15$, accurate to 3 decimal places, using the trapezoid rule.

Length $=$ \qquad
15. (1 pt)

Approximate the length of the curve $y=\cos (x)$ from $x=0$ to $x=\frac{\pi}{5}$ using 20 trapezoids.
16. (1 pt)

Approximate the length of the curve $y=x^{2}$ from $x=0$ to $x=1$ using 1370 trapezoids.

Now approximate the length of the curve $y=x^{3}$ from $x=0$ to $x=1$ using 1370 trapezoids.

Now approximate the length of the curve $y=x^{4}$ from $x=0$ to $x=1$ using 1370 trapezoids.
17. (1 pt)

What is the circumference of the hypocycloid $x^{2 / 3}+y^{2 / 3}=15$?
18. (1 pt)

What is the length of the curve $x=2 y^{3}+\frac{1}{34 y}$ from $y=1$ to $y=17$?

19. (1 pt)

Consider the ellipse given by $\frac{x^{2}}{36}+\frac{y^{2}}{100}=1$. Set up an integral to find the length of the upper half of this ellipse (the portion above the x axis). The function to be integrated should be simplified as much as possible, with no negative exponents.

$$
\text { Length }=\int_{a}^{b}(1+\ldots)^{1 / 2} \mathrm{dx}
$$

$\mathrm{a}=$ \qquad

