Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 4.10

Homework problems copyright (C)2000-2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. $(1 \mathrm{pt})$

Evaluate $8 \arcsin (-0.5)$.

2. (1 pt)

Evaluate $\operatorname{arccot}(74)$.

3. $(1 \mathrm{pt})$

Evaluate $\sin (\operatorname{arcsec}(4))$.
4. $(1 \mathrm{pt})$

Evaluate $\arccos (\cos (6 \pi))$.
5. $(1 \mathrm{pt})$

Find the derivative of $f(x)=\arcsin \left(\frac{8 x-2}{9}\right)$. Simplify your answer as much as possible.
$f^{\prime}(x)=$
6. $(1 \mathrm{pt})$

Let $y=\arccos \left(\frac{x-8}{8}\right)$. Find y^{\prime}.
$y^{\prime}=$ \qquad
What is the domain of y ?
Lower limit: \qquad
Upper limit:
Choose one of the following to describe this interval.
A. Closed interval
B. Open at the lower limit, closed at the upper limit
C. Open interval
D. Closed at the lower limit, open at the upper limit

What is the domain of y^{\prime} ?
Lower limit: \qquad
Upper limit:
Choose one of the following to describe this interval.
A. Closed interval
B. Open at the lower limit, closed at the upper limit
C. Open interval
D. Closed at the lower limit, open at the upper limit

Which graph below is the graph of y ? Click the graphs to see a larger view.

7. (1 pt)

Find the derivative of the function $u=z^{12} \operatorname{arcsec}\left(1+z^{12}\right)$.
$u^{\prime}=$ \qquad
Express your answer in terms of the functions WebWorK understands.

8. (1 pt)

Find the derivative of the function $F(x)=\left(16+x^{2}\right) \arctan \left(-\frac{x}{4}\right)$.
$F^{\prime}(x)=$ \qquad
Express your answer in terms of the functions WebWorK understands.
9. $(1 \mathrm{pt})$

Find the derivative of the function $f(x)=\sqrt{\arcsin \left(x^{2}\right)}-7 x$.
$f^{\prime}(x)=$ \qquad
Express your answer in terms of the functions WebWorK understands
10. (1 pt)

Solve the initial-value problem
$\left\{\begin{array}{l}y^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}-4 x \\ y(1)=\frac{\pi}{2}+9\end{array}\right.$
$y(x)=$
11. (1 pt)

Solve the initial-value problem
$\left\{\begin{array}{l}y^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}}-8 x \\ y\left(\frac{1}{2}\right)=\frac{\pi}{6}+10\end{array}\right.$
$y(x)=$
12. (1 pt)

What is $\int_{-3}^{3} \frac{1}{\sqrt{81-x^{2}}} d x$?

$$
\text { 13. }(1 \mathrm{pt})
$$

Suppose $\frac{1}{2}\left(x \sqrt{100-x^{2}}+100 \arcsin \left(\frac{x}{10}\right)\right)=\int f(x) d x$.
Find $f(x)$.
14. (1 pt)

What is the average value of the function $f(x)=\frac{19}{48+x^{2}}$ over the interval $[-45,7]$?

Average value of $f(x)=$ \qquad
15. (1 pt)

Estimate the value of π by approximating $\int_{1}^{e} \frac{1}{x+x(\ln (x))^{2}} d x$ using 15 circumscribed rectangles along the x axis.
$\pi \approx$ \qquad
16. (1 pt)

What is $\frac{d}{d x} \arctan (x) \int_{0.2}^{x} \frac{1}{\sqrt{1-t^{2}}} d t$?
17. (1 pt)

If $y=\cos (\ln (\arcsin (x)))$, what is y^{\prime} ? $y^{\prime}=$

18. (1 pt)

What is $\frac{d}{d x}\left(\frac{\arcsin (x)^{18}}{\arccos (x)^{18}}\right)$?
19. (1 pt)

What is $\int_{2}^{10} \frac{1}{\sqrt{1-\left(\frac{x}{12}\right)^{2}}} d x$?
20. (1 pt)

What is $\int_{0}^{26} \frac{1}{\frac{d}{d x} \arcsin \left(\frac{x}{26}\right)} d x$?
21. (1 pt)

What is $\int-\frac{17 \arctan (x)^{16}}{\left(1+x^{2}\right) \sqrt{1-\arctan (x)^{34}}} d x$?
22. (1 pt)

What is $\int \frac{-14 x^{13}}{\left(1+\arccos \left(x^{14}\right)^{2}\right) \sqrt{1-x^{28}}} d x$?
23. (1 pt)

What is $\int_{\sin \left(\frac{\pi}{16}\right)}^{\cos \left(\frac{\pi}{16}\right)} \frac{-1}{\sqrt{1-x^{2}}} d x$?

