1. (3 points) Prove the following binomial identity: $\binom{2 n}{n}=\sum_{j=0}^{n}\binom{n}{j}^{2}$.

Hint: Consider an urn with n red balls and n blue balls inside. Show that each side of the equation equals the number of ways to choose n balls from the urn.
2.(2 points) Find two sequences of positive real numbers, $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$, such that $a_{n} \sim b_{n}$ but $a_{n}^{n} \nsim b_{n}^{n}$.

Bonus (+2 points) Prove: $\binom{2 n}{n}<4^{n}$. Do NOT use Stirling's formula. Your proof should be just one line.

