Let $\left(b_{i}\right)$ be a sequence of length n with $b_{i}=i^{2}-(i-1)^{2}$. Prove that

$$
\sum_{i=1}^{n} b_{i}=n^{2}
$$

1. Stare at this problem for a while before reading any farther. Think about how we did the proof for the sum of i 's, and see if you can get started on this one. When you feel hopelessly stuck, read on.
2. Step 1: Start here:

$$
\sum_{i=1}^{n} b_{i}=
$$

and replace b_{i} by its alternative.
3. Step 2: The new sum is a difference of two terms. Hmmm... we have a property for the sum of two terms, not the difference. So rewrite the difference as a sum. (Don't remember how? Here you go: $a-b=$ $a+(-b)$.) Then use the property to split the Σ into $\Sigma+\Sigma$.
4. Step 3: One of the sums should now look like:

$$
\sum_{i=1}^{n}-(i-1)^{2}
$$

We don't have a property to work with this directly, so we need to use some algebra. Work through the steps to get $-(i-1)^{2}=-i^{2}+2 i-1$.
5. Step 4: You can now make the appropriate replacement inside the troublesome sum (troublesum?). Use a property to split this up.
6. Step 5: There should be two sums which look exactly alike, except that one is the negative of the other. These cancel!
7. Step 6: The others are amenable to other properties. Use them. You should end up with no sigmas at all! Simplify until you arrive at the result. Congratulations! You've proven the theorem!

