1. $\S 4.3 \mathrm{~B}: 5,8$.
2. Draw a graph with exactly two components.
3. Which complete bipartite graphs $K_{n, m}$ have cutpoints or bridges?
4. We now have a collection of families of graphs, $K_{n}, K_{n, m}, C_{n}$, and P_{n}.
(a) The names of the graphs are given according to the number of vertices n (and m). Find formulas for the number of edges of each family in terms of $n:\left|E\left(K_{n}\right)\right|,\left|E\left(C_{n}\right)\right|$, and $\left|E\left(P_{n}\right)\right|$. For example, you've already done this for $K_{m, n}:\left|E\left(K_{m, n}\right)\right|=m n$.
(b) Determine the diameters of each of the graphs above.
(c) The diameter of a graph was defined to be the largest of all the eccentricities of its vertices. Naturally enough, there is a notion for the smallest of the eccentricities as well, and it is called the radius, denoted $R(G)$. Find the radius of each graph above.
