- 1. §4.3B: 5, 8.
- 2. Draw a graph with exactly two components.
- 3. Which complete bipartite graphs $K_{n,m}$ have cutpoints or bridges?
- 4. We now have a collection of families of graphs, K_n , $K_{n,m}$, C_n , and P_n .
 - (a) The names of the graphs are given according to the number of vertices n (and m). Find formulas for the number of edges of each family in terms of n: $|E(K_n)|$, $|E(C_n)|$, and $|E(P_n)|$. For example, you've already done this for $K_{m,n}$: $|E(K_{m,n})| = mn$.
 - (b) Determine the diameters of each of the graphs above.
 - (c) The diameter of a graph was defined to be the *largest* of all the eccentricities of its vertices. Naturally enough, there is a notion for the *smallest* of the eccentricities as well, and it is called the radius, denoted R(G). Find the radius of each graph above.