Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 2.7

Homework problems copyright ©2000–2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

Which of the following graphs corresponds to the derivative of g?

Is g differentiable everywhere on the domain shown? Enter **yes** or **no**.

Enter below any points at which g is **not** differentiable in increasing order of x, e.g. enter -5 before -1, and -1 before 3. Leave any unused answer boxes blank.

2. (1 pt)

Below is the graph of a function f (Click image for a larger view).

Sketch the graph of the derivative of f. Where is f differentiable?

Enter below any points at which f is **not** differentiable in increasing order of x, e.g. enter -5 before -1, and -1 before 3. Leave any unused answer boxes blank.


```
to calculate the derivative of the following function:
```

$$f(x) = \frac{1-x}{1+x}$$

Enter the following answers as functions in terms of x and h. (Of course, f'(x) should be just in terms of x.)

What is f(x+h)?

What is $\frac{f(x+h) - f(x)}{h}$, reduced as far as possible? Numerator = _____

Denominator = $_$

What is f'(x)?

4. (1 pt)

1

How should the function $f(x) = x \operatorname{sgn} x$ be defined at x = 0 so that it is continuous there? Recall that $\operatorname{sgn} x = \frac{x}{|x|}$; that is, $\operatorname{sgn} x$ takes the value 1 if x > 0, -1 if x < 0, and is undefined if x = 0. $f(0) = \underline{\qquad}$

Is it then differentiable there? (yes/no)

5. (1 pt)

Using the General Power Rule, calculate the derivative of $f(x) = x^{-21}$.

f'(x) =

Where is the derivative valid? Enter any x values for which the derivative is **not** valid in increasing order of x. Leave any unused boxes blank.

6. (1 pt)

Calculate the derivative of the following function using the General Power Rule.

 $y = x^{-7/2}$

 $y' = _$

For which values of *x* is the derivative valid?

- A. All real numbers satisfying x > 0.
- B. All real numbers.
- C. All real numbers except x = 0.
- D. All real numbers satisfying $x \ge 0$.
- E. None of these.

7. (1 pt) Calculate $\frac{d}{ds}s^{(1/4)}\Big|_{s=4}$.

8. (1 pt) Find $F'(\frac{1}{4})$ if $F(x) = x^{-4}$. $F'(\frac{1}{4}) =$ _____

Generated by the WeBWorK system ©WeBWorK Team, Department of Mathematics, University of Rochester

9. (1 pt)

Let $y = x^{-7.5}$. Calculate the value of y' at the point $(4, 4^{-7.5})$. y' = _____

10. (1 pt)

For the function $g(x) = x^{-a}$, what is $\frac{d}{dx}g(x)$?

 $\frac{d}{dx}g(x) =$

11. (1 pt)

What is the derivative of the function $f(x) = x^{5005}$?

12. (1 pt) Let $f(x) = x^3$, $g(x) = x^2$, and h(x) = x. What is the derivative of f(x) evaluated at x = 1?

What is the derivative of g(x) evaluated at x = 1 ?

What is the derivative of h(x) evaluated at x = 1 ?

What do you think the derivative of f(x) + g(x) + h(x) is at x = 1?

13. (1 pt) Let $f(x) = x^{\pi}$. What is the derivative of f(x) ?

14. (1 pt)

f'(x) =

Use the definition of the derivative to find f'(x) where $f(x) = \sqrt{4x+4}$.

15. (1 pt) What is the derivative of $(x^4)^6$ at x = 4 ?