Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 2.7

Homework problems copyright ©2000-2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt)

Below is the graph of a function g (Click image for a larger view).

Which of the following graphs corresponds to the derivative of g ?

Is g differentiable everywhere on the domain shown? Enter yes or no.

Enter below any points at which g is not differentiable in increasing order of x, e.g. enter -5 before -1 , and -1 before 3 . Leave any unused answer boxes blank.
\qquad
$x=$

2. (1 pt)

Below is the graph of a function f (Click image for a larger view).

Sketch the graph of the derivative of f. Where is f differentiable?

Enter below any points at which f is not differentiable in increasing order of x, e.g. enter -5 before -1 , and -1 before 3 . Leave any unused answer boxes blank.

$$
x=
$$

\qquad
$x=$ \qquad
$x=$ \qquad

$$
\text { 3. }(1 \mathrm{pt})
$$

Use the definition of derivative,

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

to calculate the derivative of the following function:
$f(x)=\frac{1-x}{1+x}$
Enter the following answers as functions in terms of x and h.
(Of course, $f^{\prime}(x)$ should be just in terms of x.)
What is $f(x+h)$?
What is $\frac{f(x+h)-f(x)}{h}$, reduced as far as possible?
Numerator $=$ \qquad
Denominator $=$
What is $f^{\prime}(x)$?

4. (1 pt)

How should the function $f(x)=x \operatorname{sgn} x$ be defined at $x=0$ so that it is continuous there? Recall that $\operatorname{sgn} x=\frac{x}{|x|}$; that is, $\operatorname{sgn} x$ takes the value 1 if $x>0,-1$ if $x<0$, and is undefined if $x=0$. $f(0)=$ \qquad
Is it then differentiable there? (yes/no)

5. $(1 \mathrm{pt})$

Using the General Power Rule, calculate the derivative of $f(x)=x^{-21}$.
$f^{\prime}(x)=$
Where is the derivative valid? Enter any x values for which the derivative is not valid in increasing order of x. Leave any unused boxes blank.
\qquad
6. (1 pt)

Calculate the derivative of the following function using the General Power Rule.
$y=x^{-7 / 2}$
$y^{\prime}=$ \qquad
For which values of x is the derivative valid?
A. All real numbers satisfying $x>0$.
B. All real numbers.
C. All real numbers except $x=0$.
D. All real numbers satisfying $x \geq 0$.
E. None of these.
7. (1 pt)

Calculate $\left.\frac{d}{d s} s^{(1 / 4)}\right|_{s=4}$.

8. (1 pt)

Find $F^{\prime}\left(\frac{1}{4}\right)$ if $F(x)=x^{-4}$.

$$
F^{\prime}\left(\frac{1}{4}\right)=
$$

9. (1 pt)

Let $y=x^{-7.5}$. Calculate the value of y^{\prime} at the point $\left(4,4^{-7.5}\right)$.
$y^{\prime}=$
10. (1 pt)

For the function $g(x)=x^{-a}$, what is $\frac{d}{d x} g(x)$?
$\frac{d}{d x} g(x)=$
11. (1 pt)

What is the derivative of the function $f(x)=x^{5005}$?
12. (1 pt)

Let $f(x)=x^{3}, \mathrm{~g}(\mathrm{x})=x^{2}$, and $h(x)=x$.
What is the derivative of $f(x)$ evaluated at $x=1$?
What is the derivative of $g(x)$ evaluated at $x=1$?
What is the derivative of $h(x)$ evaluated at $x=1$?
What do you think the derivative of $f(x)+g(x)+h(x)$ is at $x=1$?
13. $(1 \mathrm{pt})$

Let $f(x)=x^{\pi}$. What is the derivative of $f(x)$?
14. (1 pt)

Use the definition of the derivative to find $f^{\prime}(x)$ where $f(x)=$ $\sqrt{4 x+4}$.
$f^{\prime}(x)=$ \qquad
15. (1 pt)

What is the derivative of $\left(x^{4}\right)^{6}$ at $x=4$?

