Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 2.11

Homework problems copyright ©2000-2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt)

Let $3 x^{3}=y^{2}$. Find y^{\prime} in terms of x and y .
What are the slopes of the lines tangent to this curve at points where $\mathrm{x}=0.6$? Enter answers from smallest to largest.

2. $(1 \mathrm{pt})$

Let $(x-1)^{4}=(y+13)^{5}$. Find y^{\prime} in terms of x and y .
What are the slopes of the lines tangent to this curve at points where $y=-13$? Enter answers from smallest to largest.

3. $(1 \mathrm{pt})$

Let $x^{5} y^{2}=2 x+4 y$. Find $\frac{d y}{d x}$ in terms of x and y.
$\frac{d y}{d x}=$ \qquad
4. $(1 \mathrm{pt})$

Find the equation of the tangent line to the curve $\frac{x}{y}+\left(\frac{y}{x}\right)^{5}=2$ at the point $(-1,-1)$. Write the equation of the line in slopeintercept form.
$y=$
5. (1 pt)

Find the equation of the tangent line to the curve $\tan \left(x y^{2}\right)=$ $\frac{18 x y}{\pi}$ at the point $\left(\frac{\pi}{81}, \frac{9}{2}\right)$. Write the equation of the line in slope-intercept form.
$y=$ \qquad
6. $(1 \mathrm{pt})$

Let $14 x y=2 x+7 y$. Find $y^{\prime \prime}$ in terms of x.
$y^{\prime \prime}=$
7. (1 pt)

Let $s^{7}+t^{7}=1$. Find $\frac{d s}{d t}$ in terms of s and t.
$\frac{d s}{d t}=$ \qquad

8. (1 pt)

For the function $x=\sin y+\cos y$, calculate both $\frac{d y}{d x}$ and $\frac{d x}{d y}$. Write your answers in terms of sine and cosine.
\qquad
9. $(1 \mathrm{pt})$

For the function $x^{3} y^{7}+16 x y^{9}=0$, calculate both $\frac{d y}{d x}$ and $\frac{d x}{d y}$.

$$
\frac{d y}{d x}=
$$

$\frac{d x}{d y}=$ \qquad
10. $(1 \mathrm{pt})$

For the function $\cos x \sin y+x^{5}=11$, calculate both $\frac{d y}{d x}$ and $\frac{d x}{d y}$. Write your answers in terms of sine and cosine.
\qquad

