Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 2.11

Homework problems copyright ©2000–2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt) Let $3x^3 = y^2$. Find y' in terms of x and y.

What are the slopes of the lines tangent to this curve at points where x = 0.6? Enter answers from smallest to largest.

2. (1 pt)

Let $(x-1)^4 = (y+13)^5$. Find y' in terms of x and y.

What are the slopes of the lines tangent to this curve at points where y = -13? Enter answers from smallest to largest.

3. (1 pt)	
Let $x^5y^2 = 2x + 4y$. Find $\frac{dy}{dx}$ in terms of x and y.	
$\frac{dy}{dx}$	
$\frac{d}{dx}$ =	
4. (1 pt)	

Find the equation of the tangent line to the curve $\frac{x}{y} + \left(\frac{y}{x}\right)^3 = 2$ at the point (-1, -1). Write the equation of the line in slope-intercept form.

 $y = _$ _____

Find the equation of the tangent line to the curve $\tan(xy^2) = \frac{18xy}{\pi}$ at the point $\left(\frac{\pi}{81}, \frac{9}{2}\right)$. Write the equation of the line in slope-intercept form.

Generated by the WeBWorK system ©WeBWorK Team, Department of Mathematics, University of Rochester

6. (1 pt) Let 14xy = 2x + 7y. Find y'' in terms of x. $v'' = _____$ **7.** (1 pt) Let $s^7 + t^7 = 1$. Find $\frac{ds}{dt}$ in terms of s and t. $\frac{ds}{dt} = -$ **8.** (1 pt) For the function $x = \sin y + \cos y$, calculate both $\frac{dy}{dx}$ and $\frac{dx}{dy}$. Write your answers in terms of sine and cosine. dy_{-} \overline{dx} dx = \overline{dv} **9.** (1 pt) For the function $x^3y^7 + 16xy^9 = 0$, calculate both $\frac{dy}{dx}$ and $\frac{dx}{dy}$. $\frac{dy}{dx} =$ _____ dx \overline{dv} **10.** (1 pt) For the function $\cos x \sin y + x^5 = 11$, calculate both $\frac{dy}{dx}$ and $\frac{dx}{dy}$ Write your answers in terms of sine and cosine.

