Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 3.1

Homework problems copyright ©2000–2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt) Which of the following is a solution to the differential equation v'' + v = 0?

A. $\frac{5}{6}$ B. $x^3 - 6x$ C. Ce^{x^2} D. $-13\sin(x) + 13\cos(x)$

2. (1 pt)

Which of the following is a solution to the differential equation y' = -16xy?

A.
$$7\sin(x) + \frac{7}{8}\cos(x)$$

B. $\frac{1}{-16x}$
C. Ce^{-8x^2}
D. 1

3. (1 pt)

Solve the following differential equation by separation of variables. Express your answer in terms of variables x, y, and C.

 $\frac{\frac{dy}{dx} = \frac{x^6}{y^3}}{= 0}$

4. (1 pt)

Solve the following differential equation by separation of variables. Express your answer in terms of variables x, y, and C.

= 0

 $\frac{dy}{dx} = \frac{8 + \frac{1}{10}y}{e^x}$

5. (1 pt)

Rule of 72 This rule of thumb states that to find the approximate doubling time for an investment that earns x percent interest compounded per period, divide x into 72 to find the number of periods. So, if an investment earns 7 percent per year, it would take about $\frac{72}{7} = 10.29$ years for the investment to double in value.

Give the formula for the doubling time as a function of *x*. Doubling time D(x) = _____

What is the exact time for the investment earning 7 percent annually to double?

_____ years

6. (1 pt)

A scientist in a lab monitors the growth of a population of bacteria. Her observations on the size of the population are given in the following table.

Time (hours)	Population (in thousands)
0	1.000
3	1.059
5	1.100
6.5	1.131

Assume the population follows an exponential model of the form ae^{kt} . What is the growth constant *k*?

How big is the population of bacteria one hour after the last measurement in the table?

Population = _____

7. (1 pt)

 $k = _$

Match each of the slope fields with its differential equation.

$$-\frac{dy}{dx} = \sin(x)$$
$$-\frac{dy}{dx} = x^2 - 2$$
$$-\frac{dy}{dx} = \frac{3x^2}{2y}$$
$$-\frac{dy}{dx} = \frac{1}{x}$$

8. (1 pt)

This problem assumes you can run the Slope Field applet, or another application that displays slope fields and families of solution curves for a differential equation.

The following graph shows a family of solution curves for the differential equation $\frac{dy}{dx} = y - x$.

- A. The solution curve is concave up
- B. The solution curve has a maximum
- C. The solution curve is a straight line
- D. There are infinitely many solution curves
- E. The solution curve is periodic

9. (1 pt)

Generated by the WeBWorK system ©WeBWorK Team, Department of Mathematics, University of Rochester

A scientist in a lab monitors the decrease of a population of bacteria after a toxic agent is introduced into the bacteria's environment. Her observations on the size of the population are given in the following table.

Time (hours)	Population (in thousands)
0	4.000
8	2.109
11.5	1.594
13.5	1.358

Assume the population follows an exponential model of the form ae^{kt} . What is the decay constant k?

At what time is the population of bacteria equal to one half its initial population?

Time = $_$ **10.** (1 pt)

 $k = _$

Which of the following differential equations are separable? Check all that apply.

• A.
$$\frac{dy}{dx} = \frac{x^2}{y+3}$$

• B. $\frac{dy}{dx} = x-y$
• C. $\frac{dy}{dx} = \frac{\cos(4x)}{\sqrt{y}}$
• D. $\frac{dy}{dx} = \sin(x+y)$

• E.
$$\frac{dy}{dx} = y^2 \tan(x)$$