Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 4.2

Homework problems copyright ©2000-2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. $(1 \mathrm{pt})$

Expand the sum $\sum_{i=1}^{4} i^{4}$. Use only those answer boxes that you need; leave the rest blank.
first term = \qquad
second term $=$ \qquad
third term = \qquad
fourth term $=$ \qquad
fifth term =
2. (1 pt)

Which of the following represents the sum
$5^{8}+6^{8}+\cdots+10^{8}$
in sigma notation?
A. $\sum_{i=5}^{10} i^{8}$
B. $\sum_{i=6}^{10} i^{8}$
C. $\sum_{i=0}^{n} i^{8}$
D. $\sum_{i=1}^{n} i^{8}$
E. $\sum_{i=5}^{n} i^{8}$
3. $(1 \mathrm{pt})$

Write the sum
$\frac{1}{3}+\frac{16}{9}+\frac{81}{27}+\cdots+\frac{n^{4}}{3^{n}}$
in sigma notation.
lower limit: $i=$ \qquad
upper limit: $i=$ \qquad
$f(i)=$ \qquad

4. $(1 \mathrm{pt})$

Let P_{7} denote the partition of the interval $[0,3]$ into $\mathrm{n}=7$ subintervals of equal length. If $f(x)=x$, evaluate $L\left(f, P_{7}\right)$ and $U\left(f, P_{7}\right)$.
$L\left(f, P_{7}\right)=$ \qquad
$U\left(f, P_{7}\right)=$
5. $(1 \mathrm{pt})$

Let P_{5} denote the partition of the interval $[-1,1]$ into $\mathrm{n}=5$ subintervals of equal length. If $f(x)=e^{x}$, evaluate $L\left(f, P_{5}\right)$ and $U\left(f, P_{5}\right)$.
$L\left(f, P_{5}\right)=$ \qquad
$U\left(f, P_{5}\right)=$
6. $(1 \mathrm{pt})$

Is the function $f(x)=\left\{\begin{array}{ll}x-1 & \text { if } x<1 \\ x^{2}-1 & \text { if } x \geq 1\end{array}\right.$ Riemann integrable on $[-1,1]$ (yes/no)?
7. (1 pt)

What is $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{5^{2}}{n^{2}} \sqrt{n^{2}-i^{2}}$?
A. One fourth of the area of a circle of radius 3
B. π
C. ∞
D. None of the above.
8. $(1 \mathrm{pt})$

Which formula is not equivalent to the others?
A. $\sum_{j=-1}^{1} \frac{(-1)^{j}}{j+2}$
B. $\sum_{k=0}^{2} \frac{(-1)^{k}}{k+1}$
C. $\sum_{k=1}^{3} \frac{(-1)^{k}}{k}$
D. $\sum_{k=2}^{4} \frac{(-1)^{k-1}}{k-1}$
9. $(1 \mathrm{pt})$

Express the limit
$\lim _{\|P\| \rightarrow 0} \sum_{i=1}^{n} c_{i}{ }^{3} \Delta x_{i}$, where P is a partition of $[2,10]$ and c_{i} is a number in the ith subinterval of this partition
as a definite integral $\int_{a}^{b} f(x) d x$, with $a<b$.
$a=$ \qquad
$b=$
$f(x)=$ \qquad
10. $(1 \mathrm{pt})$

Express the area of the shaded region as an integral $\int_{a}^{b} f(x) d x$, with $a<b$.

$$
\begin{aligned}
& a= \\
& b= \\
& \hline
\end{aligned}
$$

$f(x)=$ \qquad
11. (1 pt)

Express the following sum in sigma notation, using i as your index and beginning at $\mathrm{i}=1$.
$\frac{1}{2^{2}}-11+\frac{2}{2^{2}}-22+\frac{3}{2^{2}}-33+\frac{4}{2^{2}}-44+\ldots+\frac{n}{2^{2}}-11 n$
Let L be the upper limit of i and E be the expression inside the summation.

$$
\mathrm{L}=
$$

$\mathrm{E}=$
12. $(1 \mathrm{pt})$

Which of the following functions are Riemann integrable over the interval $[0,1]$?

- A. x if x rational, 0 if x irrational
- B. 5 if x rational, 2 if x irrational
- C. $\tan (\pi x)$
- D. $x^{59,844,589}$
- E. $\cos (x)$
- F. All of the above
- G. None of the above

13. $(1 \mathrm{pt})$

What is the value of $\sum_{i=1}^{7} \frac{i^{2}}{\cos (i)^{4}}$?
14. (1 pt)

Let $f(x)=x^{6}+x^{7}$, and let P_{i} be the partition of $[0,1]$ constructed by subdividing $[0,1]$ in half i times.

What is $L\left(P_{3}, f\right)$? \qquad
What is $U\left(P_{3}, f\right)$?
15. (1 pt)

Express the following sum in sigma notation, using j as your index and ending at $\mathrm{j}=6$.
$\frac{6}{7}-3^{2}+\frac{8}{7}-4^{2}+\frac{10}{7}-5^{2}+\frac{12}{7}-6^{2}$
Let L be the lower limit of j and E be the expression inside the summation.
$\mathrm{L}=$ \qquad
$\mathrm{E}=$
16. (1 pt)

What is the value of $\sum_{i=4}^{10} \ln (11 i)-\cos (8 i)$?
17. (1 pt)

What is the value of $\sum_{i=1}^{8} 16 i+\frac{8}{i}$?
18. (1 pt)

Find $\int_{0}^{2} \frac{x}{2}$ using limits of Riemann sums.
$\int_{0}^{2} \frac{x}{2}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}$
This limit is equal to \qquad

