Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 4.3

Homework problems copyright ©2000-2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt)

The following sum can be interpreted as a sum of areas of rectangles which approximate the area of a plane region R. By taking the limit of this sum, approximate the area of R.
$S_{n}=\sum_{i=1}^{n} \frac{2}{n}\left(1+\frac{2 i}{n}\right)$
Area of $R=$ \qquad square units

2. (1 pt)

Express the limit
$\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{6}{n} \ln \left(1+\frac{6 i}{n}\right)$
as a definite integral $\int_{0}^{b} f(x) d x$ by finding b and $f(x)$.
$b=$
$f(x)=$
3. $(1 \mathrm{pt})$

Simplify the following expression.
$7 \int_{a}^{b} f(x) d x+7 \int_{b}^{c} f(x) d x-5 \int_{c}^{a} f(x) d x$
A. $7 \int_{a}^{c} f(x) d x+5 \int_{c}^{a} f(x) d x$
B. $12 \int_{a}^{c} f(x) d x$
C. $24 \int_{a}^{c} f(x) d x$
D. $12 \int_{a}^{b} f(x) d x$
E. $2 \int_{a}^{c} f(x) d x$
4. (1 pt)

Evaluate the following integral using properties of definite integrals and interpreting integrals as areas:

$$
\int_{-1}^{6}(4 x-2) d x
$$

5. (1 pt)

Evaluate the following integral using properties of definite integrals and interpreting integrals as areas.

$$
\int_{-4}^{0} \sqrt{16-x^{2}} d x
$$

6. (1 pt)

Evaluate the following integral using properties of definite integrals and interpreting integrals as areas.
$\frac{\int_{-\pi / 4}^{\pi / 4} \sin x d x}{7(1 \mathrm{pt})}$
7. (1 pt)

Evaluate the following integral using properties of definite integrals and interpreting integrals as areas.

$$
\int_{-2}^{2}\left(5 u^{3}-5 u^{9}+\frac{\pi}{2}\right) d u
$$

8. (1 pt)

Given $\int_{0}^{a} x^{2} d x=\frac{a^{3}}{3}$
evaluate
$\int_{0}^{2}\left(3 v^{2}+4 v+6\right) d v$
A. π
B. 56
C. 0
D. 28
E. 9.3

9. $(1 \mathrm{pt})$

Find $\int_{0}^{2} g(x) d x$, where

$$
g(x)=\left\{\begin{array}{l}
x^{2}, 0 \leq x \leq 1 \\
x^{9}, 1<x \leq 2
\end{array}\right.
$$

10. (1 pt)

Consider the function $f(x)=x$.
Which of the following statements is true? Check all that apply.

- A. $f(x)$ is an even function.
- B. There exists c in $[a, b]$ such that $\int_{a}^{b} f(x) d x=(b-$ a) $f(c)$.
- C. $f(x)$ has the property $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$.
- D. $f(x)$ is an odd function.
- E. $f(x)$ has the property $\int_{-a}^{a} f(x) d x=0$.

11. (1 pt)

What is $\int_{-13}^{13} \sqrt{169-x^{2}} d x$?

12. (1 pt)

Which of the following integrals are negative?

- A. $\int_{0}^{3}-x^{2}+3 x+4 d x$
- B. $\int_{0}^{1} x-\sin (x) d x$
- C. $\int_{-3}^{6}-|x| d x$
- D. $\int_{-\pi-1}^{\pi} \sin (x) d x$
- E. $\int_{-3 \pi / 2}^{\pi} \cos (x) d x$
- F. All of the above
- G. None of the above

13. $(1 \mathrm{pt})$

What is

$$
\int_{\frac{5 \pi}{2}}^{\frac{9 \pi}{2}} \cos (x)+\sqrt{\pi^{2}-\left(x-\frac{7 \pi}{2}\right)^{2}}+5 x d x ?
$$

What is the average value of this function over the interval $\left[\frac{5 \pi}{2}, \frac{9 \pi}{2}\right]$?
14. (1 pt)

Write the expression
$\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1}\left(\left(1+\frac{5 i}{n}\right)^{2}+3\left(1+\frac{5 i}{n}\right)+16\right) \frac{5}{n}$
as a definite integral, $\int_{a}^{b} f(x) d x$.
$\mathrm{a}=$ \qquad
$\mathrm{b}=$
$f(x)=$
15. $(1 \mathrm{pt})$

What is $\int_{9}^{25} \sqrt{64-(x-17)^{2}}+10 d x$?
What is the average value of this function over the interval $[9,25]$?
16. (1 pt)

Write the expression
$\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \sin \left(\left(\frac{4 \pi i}{n}\right)^{2}\right) \frac{4 \pi}{n}$
as a definite integral, $\int_{a}^{b} f(x) d x$.
$\mathrm{a}=$ \qquad
$\mathrm{b}=$
$\mathrm{f}(\mathrm{x})=$ \qquad
17. (1 pt)

Write the expression
$\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \frac{i}{n^{2}}$
as a definite integral, $\int_{a}^{b} f(x) d x$.
$\mathrm{a}=$
$\mathrm{b}=$
$f(x)=$
18. (1 pt)

Write the expression
$\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \frac{8 \ln \left(4\left(2+\frac{8 i}{n}\right)\right)}{3 n}$
as a definite integral, $\int_{a}^{b} f(x) d x$.
$\mathrm{a}=$
b $=$
$\mathrm{f}(\mathrm{x})=$ \qquad
19. (1 pt)

What is $\int_{-\frac{3 \pi}{2}}^{\frac{\pi}{2}}|x|+\cos (x) d x$?

