Principles of Calculus Modeling: An Interactive Approach by Donald Kreider, Dwight Lahr, and Susan Diesel Exercises for Section 4.7

Homework problems copyright ©2000-2005 by Donald L. Kreider, C. Dwight Lahr, Susan J. Diesel.

1. (1 pt)

Find the area of the plane region bounded by $f(x)=\sqrt{x}$ and $f(x)=x^{2}$. It may be useful to make a sketch of the region.

Area $=$ \qquad square units
2. (1 pt)

Find the area in the plane bounded by the two parabolas $y=$ $2 x^{2}-80 x+122$ and $y=-4 x^{2}-2 x-10$.

Area $=$ \qquad square units
3. $(1 \mathrm{pt})$

What is the area of the region between the parabola $y=-4 x^{2}-$ $34 x-70$ and the line $y+2 x=-10$?

Area $=$
A. 2.667 square units
B. 5.333 square units
C. 277.333 square units
D. 64.000 square units
E. -5.333 square units
4. $(1 \mathrm{pt})$

Find the area in the plane bounded by the two curves $f(x)=4 x^{2}$ and $g(x)=\frac{28}{6 x^{2}+1}$.

Area $=$ \qquad square units
5. (1 pt)

Find the area in the plane bounded by the two curves $f(x)=$ $x^{3}-9 x^{2}+80 x$ and $g(x)=9 x^{2}-x$.

Area $=$ \qquad square units

6. (1 pt)

Find the area in the plane bounded by the two curves $y=\sqrt{x}$ and $y=8 x$.

Area $=$ \qquad square units
7. (1 pt)

Find the area in the plane bounded by the two curves $y=|x|$ and $y=(x+2)^{2}-9$. It may be useful to make a sketch of the region.

Area $=$ \qquad square units
8. $(1 \mathrm{pt})$

Find the area in the plane bounded by the curves $x=y^{2}$, $y=\frac{1}{5} x-7.2, y=-2$, and $y=7$.

Area $=$ \qquad square units
9. $(1 \mathrm{pt})$

Find the upper portion of the area in the plane bounded by the curves $y=\sqrt{1-x^{2}}, y=0$, and to the right of $y=6 x+1$. It may be useful to make a sketch of the region.

Area $=$ \qquad square units
10. (1 pt)

Find the area of the region in the plane bounded by the curve $y=\cos (x)$ and the line $y=\frac{-1}{8} x+\frac{1}{16} \pi$. Since $\cos (x)$ is periodic, only find the region bounded by the line and the curve between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$. It may be useful to make a sketch of the region. You may use an applet, Maple, or another computer algebra program to find where the curve and the line intersect.

Area = \qquad square units
11. (1 pt)

Find the area of the region bounded by the y-axis and the curve with equation $y^{2}-16 y+10 x=0$.

Area = \qquad
12. (1 pt)

Find the area between the curves $y^{2}=17 x$ and $x^{2}=17 y$.
Area =
13. (1 pt)

Find the area between the curves $y=\cos (x)$ and $y=\sin (x)$ on the interval $\left[\frac{21 \pi}{4}, \frac{25 \pi}{4}\right]$.

Area $=$
14. (1 pt)

Find the area between the curves $x-y=10$ and $y^{2}=5 x$.
Area =
15. (1 pt)

Consider the rectangle of width 9 , height 81 with lower left corner at the origin. The parabola $y=x^{2}$ splits this rectangle into lower and upper regions. What is the ratio of the lower region's area to the upper region's area?

Ratio $=$
16. (1 pt)

Consider the rectangle of width 9 , height 4 with lower left corner at the origin. The curve $y=\frac{4 x^{14}}{9^{14}}$ splits this rectangle into upper and lower regions. What is the ratio of the upper region's area to the lower region's area?

Ratio $=$
17. (1 pt)

Find the area between the curves $y=x^{2}+14 x+17$ and $y=x$ over the interval [-36,27].

Area $=$
18. (1 pt)

What is the area of the region bounded by $y=e^{x}, y=1$, and $x=10$?
19. (1 pt)

What is the area of the region bounded by the curve $y=\sin (x)$ and the same curve flipped over the x axis, over the interval $[0,9 \pi]$?

Generated by the WeBWorK system (C)WeBWorK Team, Department of Mathematics, University of Rochester

