Composition of group-subgroup subfactors

Richard Burstein
Vanderbilt University

October 23

Composition of group-subgroup subfactors

- Planar algebras and subfactors
- Automorphisms of planar algebras
- Planar fixed-point subfactors
- Examples and applications

Definitions:

- I_{1} factor: von Neumann algebra with trivial center, finite trace
- I_{1} subfactor: inclusion of I_{1} factors $M_{0} \subset M_{1}$
- Jones index: dimension of $L^{2}\left(M_{1}\right)$ as left M_{0} module
- Basic construction: $M_{2}=\left\{M_{1}, E_{M_{0}}\right\}^{\prime \prime} \subset B\left(L^{2}\left(M_{1}\right)\right)$
- Iterate (with finite index) : $M_{0} \subset M_{1} \subset M_{2} \subset M_{3} \subset \ldots$

Definitions:

- I_{1} factor: von Neumann algebra with trivial center, finite trace
- I_{1} subfactor: inclusion of I_{1} factors $M_{0} \subset M_{1}$
- Jones index: dimension of $L^{2}\left(M_{1}\right)$ as left M_{0} module
- Basic construction: $M_{2}=\left\{M_{1}, E_{M_{0}}\right\}^{\prime \prime} \subset B\left(L^{2}\left(M_{1}\right)\right)$
- Iterate (with finite index) $M_{0} \subset M_{1} \subset M_{2} \subset M_{3} \subset \ldots$

Standard invariant:

$$
\begin{array}{rlllll}
M_{0}^{\prime} \cap M_{0} \subset & M_{0}^{\prime} \cap M_{1} & \subset & M_{0}^{\prime} \cap M_{2} & \subset & \ldots \\
& \cup & & \cup & & \\
& M_{1}^{\prime} \cap M_{1} & \subset & M_{1}^{\prime} \cap M_{2} & \subset & \ldots
\end{array}
$$

Definitions:

- I_{1} factor: von Neumann algebra with trivial center, finite trace
- I_{1} subfactor: inclusion of I_{1} factors $M_{0} \subset M_{1}$
- Jones index: dimension of $L^{2}\left(M_{1}\right)$ as left M_{0} module
- Basic construction: $M_{2}=\left\{M_{1}, E_{M_{0}}\right\}^{\prime \prime} \subset B\left(L^{2}\left(M_{1}\right)\right)$
- Iterate (with finite index) $M_{0} \subset M_{1} \subset M_{2} \subset M_{3} \subset \ldots$

Standard invariant:

$$
\begin{array}{rllll}
M_{0}^{\prime} \cap M_{0} \subset & M_{0}^{\prime} \cap M_{1} & \subset M_{0}^{\prime} \cap M_{2} & \subset & \ldots \\
& \cup & & & \\
& M_{1}^{\prime} \cap M_{1} & \subset & M_{1}^{\prime} \cap M_{2} & \subset
\end{array} \ldots
$$

- Standard invariant \rightarrow planar algebra (Jones)
- Planar algebra \rightarrow standard invariant (Popa)

Today: Construct planar algebras abstractly, obtain new subfactors.

Planar algebra:

- Graded vector space $V_{n}^{ \pm}, n \geq 0$
- Associative action of the planar operad

Planar algebra:

- Graded vector space $V_{n}^{ \pm}, n \geq 0$
- Associative action of the planar operad

Planar operad:

- Planar tangles
- Labelled internal disks
- Checkerboard shading
- Distinguished boundary region
- Composition via gluing

Subfactor planar algebra:

- $\operatorname{dim} V_{0}^{ \pm}=1$
- $\operatorname{dim} V_{n}^{ \pm}<\infty \forall n$
- Involution
- Positive definite trace
- Spherical

Subfactor planar algebra:

- $\operatorname{dim} V_{0}^{ \pm}=1$
- $\operatorname{dim} V_{n}^{ \pm}<\infty \forall n$
- Involution
- Positive definite trace
- Spherical

The standard invariant of an (extremal, finite index) $/ I_{1}$ subfactor is a subfactor planar algebra (Jones)

- $V_{n}^{+}=M_{0}^{\prime} \cap M_{n}$
- $V_{n}^{-}=M_{1}^{\prime} \cap M_{n+1}$
- action of planar operad from Jones '99

Subfactor planar algebra:

- $\operatorname{dim} V_{0}^{ \pm}=1$
- $\operatorname{dim} V_{n}^{ \pm}<\infty \forall n$
- Involution
- Positive definite trace
- Spherical

The standard invariant of an (extremal, finite index) I_{1} subfactor is a subfactor planar algebra (Jones)

- $V_{n}^{+}=M_{0}^{\prime} \cap M_{n}$
- $V_{n}^{-}=M_{1}^{\prime} \cap M_{n+1}$
- action of planar operad from Jones '99

A subfactor planar algebra is the standard invariant of an (extremal, finite-index) subfactor (Popa, GJS, JSW, KS).

Subfactor planar algebra:

- $\operatorname{dim} V_{0}^{ \pm}=1$
- $\operatorname{dim} V_{n}^{ \pm}<\infty \forall n$
- Involution
- Positive definite trace
- Spherical

The standard invariant of an (extremal, finite index) $/ I_{1}$ subfactor is a subfactor planar algebra (Jones)

- $V_{n}^{+}=M_{0}^{\prime} \cap M_{n}$
- $V_{n}^{-}=M_{1}^{\prime} \cap M_{n+1}$
- action of planar operad from Jones '99

A subfactor planar algebra is the standard invariant of an (extremal, finite-index) subfactor (Popa, GJS, JSW, KS).
Subfactor planar algebra \leftrightarrow extremal subfactor.
Problem: Constructing SPAs is hard (BDG, Peters, BMPS, B).

Bipartite graph planar algebra P_{Γ}

- Γ is any locally finite bipartite graph
- Fix a positive weight vector μ of Γ
- For finite graphs (only) μ is unique
- This is an (unbounded) eigenfunction of the adjacency matrix

Bipartite graph planar algebra P_{Γ}

- Γ is any locally finite bipartite graph
- Fix a positive weight vector μ of Γ
- For finite graphs (only) μ is unique
- This is an (unbounded) eigenfunction of the adjacency matrix
- V_{n}^{+}has basis of length-2n loops on Γ, starting at an even vertex
- V_{n}^{-}has basis of length-2n loops starting on an odd vertex

Bipartite graph planar algebra P_{Γ}

- Γ is any locally finite bipartite graph
- Fix a positive weight vector μ of Γ
- For finite graphs (only) μ is unique
- This is an (unbounded) eigenfunction of the adjacency matrix
- V_{n}^{+}has basis of length-2n loops on Γ, starting at an even vertex
- V_{n}^{-}has basis of length-2n loops starting on an odd vertex
- action of planar operad determined by Г, μ : Jones '99

BGPAs are not of subfactor type

- $V_{0}^{ \pm}$has dimension equal to the number of even/odd vertices
- If the graph is infinite, then each $V_{n}^{ \pm}$is infinite dimensional

BGPAs are not of subfactor type

- $V_{0}^{ \pm}$has dimension equal to the number of even/odd vertices
- If the graph is infinite, then each $V_{n}^{ \pm}$is infinite dimensional
- However, BGPAs have an involution and a positive definite trace

BGPAs are not of subfactor type

- $V_{0}^{ \pm}$has dimension equal to the number of even/odd vertices
- If the graph is infinite, then each $V_{n}^{ \pm}$is infinite dimensional
- However, BGPAs have an involution and a positive definite trace

Theorem (B '10):
Let Γ be a locally finite graph with positive weight vector μ, A a planar subalgebra of P_{Γ} with $\operatorname{dim} A \cap V_{0}^{ \pm}=1$.
Then A is a subfactor planar algebra: the other necessary properties are inherited from P_{Γ}.
This is straightforward when Γ is finite, but when Γ is infinite it must be shown that $A \cap V_{n}^{ \pm}$is finite dimensional.

BGPAs are not of subfactor type

- $V_{0}^{ \pm}$has dimension equal to the number of even/odd vertices
- If the graph is infinite, then each $V_{n}^{ \pm}$is infinite dimensional
- However, BGPAs have an involution and a positive definite trace

Theorem (B '10):
Let Γ be a locally finite graph with positive weight vector μ, A a planar subalgebra of P_{Γ} with $\operatorname{dim} A \cap V_{0}^{ \pm}=1$.
Then A is a subfactor planar algebra: the other necessary properties are inherited from P_{Γ}.
This is straightforward when Γ is finite, but when Γ is infinite it must be shown that $A \cap V_{n}^{ \pm}$is finite dimensional.

Caveat: If Γ is infinite, then A might not be spherical. However, A still corresponds to a subfactor (Burns)-the subfactor is extremal iff A is spherical.

BGPAs are not of subfactor type

- $V_{0}^{ \pm}$has dimension equal to the number of even/odd vertices
- If the graph is infinite, then each $V_{n}^{ \pm}$is infinite dimensional
- However, BGPAs have an involution and a positive definite trace
Theorem (B '10):
Let Γ be a locally finite graph with positive weight vector μ, A a planar subalgebra of P_{Γ} with $\operatorname{dim} A \cap V_{0}^{ \pm}=1$.
Then A is a subfactor planar algebra: the other necessary properties are inherited from P_{Γ}.
This is straightforward when Γ is finite, but when Γ is infinite it must be shown that $A \cap V_{n}^{ \pm}$is finite dimensional.

Caveat: If Γ is infinite, then A might not be spherical. However, A still corresponds to a subfactor (Burns)-the subfactor is extremal iff A is spherical.

So we can find new subfactor planar algebras as small planar subalgebras of BGPAs. This provides new subfactors.

Automorphisms of planar algebras

Problem: finding small planar subalgebras of BGPAs is hard. Plan: automorphisms of planar algebras (Gupta, Loi, Svendsen, Bisch, B).

Automorphisms of planar algebras

Problem: finding small planar subalgebras of BGPAs is hard. Plan: automorphisms of planar algebras (Gupta, Loi, Svendsen, Bisch, B).
P is a planar algebra.

- α is an invertible graded linear map on $V_{n}^{ \pm}$
- $\alpha \in \operatorname{Aut} P$ if it commutes with the entire planar operad
- $G \subset \operatorname{Aut} P \rightarrow P^{G}$ is closed under the planar operad

Automorphisms of planar algebras

Problem: finding small planar subalgebras of BGPAs is hard. Plan: automorphisms of planar algebras (Gupta, Loi, Svendsen, Bisch, B).
P is a planar algebra.

- α is an invertible graded linear map on $V_{n}^{ \pm}$
- $\alpha \in \operatorname{Aut} P$ if it commutes with the entire planar operad
- $G \subset \operatorname{Aut} P \rightarrow P^{G}$ is closed under the planar operad

To show $\alpha \in \operatorname{Aut} P$, it suffices to show that it commutes with a convenient generating set of the planar operad. In general computing Aut P is hard, but the group may be completely described when P is a BGPA ($\mathrm{B}^{\prime} 10$). Aut P is generated by

- Graph automorphism operators (from Autए)
- Multiplication operators (from unitaries in V_{1}^{+})

Bisch-Haagerup subfactors

- Let G be a group generated by two finite subgroups H and K, with $H \cap K=\{e\}$
- Let H and K have outer actions on some I_{1} factor M
- Fixed point subfactor: $M^{H} \subset M$
- Crossed product subfactor: $M \subset M \rtimes K$

Bisch-Haagerup subfactors

- Let G be a group generated by two finite subgroups H and K, with $H \cap K=\{e\}$
- Let H and K have outer actions on some I_{1} factor M
- Fixed point subfactor: $M^{H} \subset M$
- Crossed product subfactor: $M \subset M \rtimes K$
- Composite subfactor (BH) $M^{H} \subset M \rtimes K$
- Principal graph determined by $G \subset$ Out M
- Planar algebra determined by groups plus scalar 3-cocycle obstruction: $\omega \in H^{3}\left(G, S^{1}\right)$
- IRF model for planar algebra (BDG)
- Determined by subfactor pair: $M \subset M \rtimes H, M \subset M \rtimes K$

Generalized Bisch-Haagerup subfactors

- Let G be a group generated by two finite subgroups H and K, with $H \cap K=A$.
- Nondegenerate group quadrilateral: $\begin{array}{llll} & H & \subset & G \\ & A \subset C\end{array}$

Generalized Bisch-Haagerup subfactors

- Let G be a group generated by two finite subgroups H and K, with $H \cap K=A$.
- Nondegenerate group quadrilateral: $\begin{array}{llll} & H \subset G \\ & A \subset K\end{array}$
- Let M be a I_{1} factor admitting outer actions of H and K which agree on A, such that G is the group generated by H and K in Out M
- $M \rtimes A \subset M \rtimes H$ and $M \rtimes A \subset M \rtimes K$ are subfactors.

Generalized Bisch-Haagerup subfactors

- Let G be a group generated by two finite subgroups H and K, with $H \cap K=A$.
- Nondegenerate group quadrilateral: $\begin{array}{llll} & H & & G \\ & A & \subset & K\end{array}$
- Let M be a I_{1} factor admitting outer actions of H and K which agree on A, such that G is the group generated by H and K in Out M
- $M \rtimes A \subset M \rtimes H$ and $M \rtimes A \subset M \rtimes K$ are subfactors.
- Let N be the result of the downward basic construction on $M \rtimes A \subset M \rtimes H$. (i.e. $M \rtimes H$ is isomorphic to the basic construction on $N \subset M \rtimes A$).
- Then $N \subset M \rtimes K$ is the group type subfactor obtained from the above group quadrilateral.
- This is a generalization of the Bisch-Haagerup construction $M^{H} \subset M \rtimes K$.

Irreducible planar fixed point subfactors

The class of planar fixed point subfactors is very large, but a few assumptions make it more tractible.

- Let Γ be a bipartite graph with no multiple edges.
- Let $G \subset$ Aut P_{Γ} act transitively on V_{1}^{+}.

Irreducible planar fixed point subfactors

The class of planar fixed point subfactors is very large, but a few assumptions make it more tractible.

- Let Γ be a bipartite graph with no multiple edges.
- Let $G \subset$ Aut P_{Γ} act transitively on V_{1}^{+}.
- Then the planar fixed point subfactor obtained from P_{Γ}^{G} is a generalized Bisch-Haagerup subfactor (group quadrilateral).
- Moreover, the planar algebra of any such subfactor may be obtained in this way ($\mathrm{B}^{\prime} 10$).

All of these irreducible subfactors have (composite) integer index, and have an intermediate subfactor.

Cocycle perturbations

- Let ρ be a map from some group G to Aut P_{Γ}, such that P_{Γ}^{G} produces a subfactor.
- Let E be the center of the group of multiplication operators (a normal subgroup of Aut P_{Γ})
- Let α be a map from G to E such that $\alpha_{g h}=\alpha_{g} \rho_{g}\left(\alpha_{h}\right)$.
- Equivalently, α is a 1 -coycle for G with coefficients in E.
- This is a perturbation of the G-action, producing a (potentially) different SPA with the same principal graph.

Cocycle perturbations

- Let ρ be a map from some group G to Aut P_{Γ}, such that P_{Γ}^{G} produces a subfactor.
- Let E be the center of the group of multiplication operators (a normal subgroup of Aut P_{Γ})
- Let α be a map from G to E such that $\alpha_{g h}=\alpha_{g} \rho_{g}\left(\alpha_{h}\right)$.
- Equivalently, α is a 1 -coycle for G with coefficients in E.
- This is a perturbation of the G-action, producing a (potentially) different SPA with the same principal graph.
- Generalized Bisch-Haagerup planar algebras are determined by (A, H, K, G) plus $\omega \in H^{3}\left(G, S^{1}\right)$, with the restriction that ω has trivial image under the inflation map $H^{3}\left(G, S^{1}\right) \rightarrow^{3}\left(H *_{A} K, S^{1}\right)$.
- From some elementary group cohomology, all such cocycles can be obtained from elements of $H^{1}(G, E)$ (c.f. Jones)
- This sometimes allows enumeration of BH subfactors with specified G, H, K (c.f. IK '93)

Enumeration of Bisch-Haagerup subfactors

Taking $G=A_{4}$ produces a Bisch-Haagerup subfactor $\left(H=Z_{2}\right.$, $\left.K=Z_{3}, G=A_{4}\right)$. Here $H^{1}(G, E)=Z_{2}$.

Enumeration of Bisch-Haagerup subfactors

Taking $G=A_{4}$ produces a Bisch-Haagerup subfactor $\left(H=Z_{2}\right.$, $\left.K=Z_{3}, G=A_{4}\right)$. Here $H^{1}(G, E)=Z_{2}$.
The principal graphs of the subfactor are

Enumeration of Bisch-Haagerup subfactors

Taking $G=A_{4}$ produces a Bisch-Haagerup subfactor $\left(H=Z_{2}\right.$, $\left.K=Z_{3}, G=A_{4}\right)$. Here $H^{1}(G, E)=Z_{2}$.
The principal graphs of the subfactor are

- The cohomology computation implies that there are two (hyperfinite) subfactors with this principal graph.
- They are distinguished by whether or not the representation of G in Out R lifts to Aut R.

Wildness at $3+2 \sqrt{2}$

Reducible planar fixed point subfactors are more complicated

- They are determined by the group and the graph, not just the group
- They need not be integer index
- Smallest index: $3+2 \sqrt{2}$
- Graph: tree branching 3 times at each even vertex, 2 times at each odd vertex

Wildness at $3+2 \sqrt{2}$

Reducible planar fixed point subfactors are more complicated

- They are determined by the group and the graph, not just the group
- They need not be integer index
- Smallest index: $3+2 \sqrt{2}$
- Graph: tree branching 3 times at each even vertex, 2 times at each odd vertex

This is the smallest possible index for reducible extremal subfactors (PP)

- Color the edges red and blue
- Every even vertex contacts two red edges and one blue
- Every odd vertex contacts one red and one blue

Wildness at $3+2 \sqrt{2}$

Reducible planar fixed point subfactors are more complicated

- They are determined by the group and the graph, not just the group
- They need not be integer index
- Smallest index: $3+2 \sqrt{2}$
- Graph: tree branching 3 times at each even vertex, 2 times at each odd vertex
This is the smallest possible index for reducible extremal subfactors (PP)
- Color the edges red and blue
- Every even vertex contacts two red edges and one blue
- Every odd vertex contacts one red and one blue
- Any vertex-transitive color-preserving group of graph automorphisms produces a subfactor
- Infinitely many of these produce mutually nonisomorphic subfactors

