Composition of group-subgroup subfactors

Richard Burstein Vanderbilt University

October 23

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Composition of group-subgroup subfactors

- Planar algebras and subfactors
- Automorphisms of planar algebras

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Planar fixed-point subfactors
- Examples and applications

Definitions:

- *II*₁ factor: von Neumann algebra with trivial center, finite trace
- ▶ II_1 subfactor: inclusion of II_1 factors $M_0 \subset M_1$
- ▶ Jones index: dimension of $L^2(M_1)$ as left M_0 module
- ▶ Basic construction: $M_2 = \{M_1, E_{M_0}\}'' \subset B(L^2(M_1))$
- ▶ Iterate (with finite index): $M_0 \subset M_1 \subset M_2 \subset M_3 \subset ...$

A D M 4 目 M 4 日 M 4 1 H 4

Definitions:

- *II*₁ factor: von Neumann algebra with trivial center, finite trace
- ▶ II_1 subfactor: inclusion of II_1 factors $M_0 \subset M_1$
- ▶ Jones index: dimension of $L^2(M_1)$ as left M_0 module
- ▶ Basic construction: $M_2 = \{M_1, E_{M_0}\}'' \subset B(L^2(M_1))$
- ▶ Iterate (with finite index): $M_0 \subset M_1 \subset M_2 \subset M_3 \subset ...$

Standard invariant:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definitions:

- *II*₁ factor: von Neumann algebra with trivial center, finite trace
- ▶ II_1 subfactor: inclusion of II_1 factors $M_0 \subset M_1$
- ▶ Jones index: dimension of $L^2(M_1)$ as left M_0 module
- ▶ Basic construction: $M_2 = \{M_1, E_{M_0}\}'' \subset B(L^2(M_1))$
- ▶ Iterate (with finite index): $M_0 \subset M_1 \subset M_2 \subset M_3 \subset ...$

Standard invariant:

► Standard invariant → planar algebra (Jones)

▶ Planar algebra → standard invariant (Popa)
Today: Construct planar algebras abstractly, obtain new subfactors.

Planar algebra:

- Graded vector space V_n^{\pm} , $n \ge 0$
- Associative action of the planar operad

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Planar algebra:

- Graded vector space V_n^{\pm} , $n \ge 0$
- Associative action of the planar operad

▲日▼▲□▼▲□▼▲□▼ □ ○○○

Planar operad:

- Planar tangles
- Labelled internal disks
- Checkerboard shading
- Distinguished boundary region
- Composition via gluing

- $\blacktriangleright \dim V_0^\pm = 1$
- ▶ dim $V_n^{\pm} < \infty \forall n$
- Involution
- Positive definite trace

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Spherical

- ▶ dim $V_0^{\pm} = 1$
- ▶ dim $V_n^{\pm} < \infty \forall n$
- Involution
- Positive definite trace
- Spherical

The standard invariant of an (extremal, finite index) ${\it II}_1$ subfactor is a subfactor planar algebra (Jones)

▲日▼▲□▼▲□▼▲□▼ □ ○○○

$$\blacktriangleright V_n^+ = M_0' \cap M_n$$

$$\blacktriangleright V_n^- = M_1' \cap M_{n+1}$$

action of planar operad from Jones '99

- ▶ dim $V_0^{\pm} = 1$
- $\blacktriangleright \dim V_n^{\pm} < \infty \forall n$
- Involution
- Positive definite trace
- Spherical

The standard invariant of an (extremal, finite index) II_1 subfactor is a subfactor planar algebra (Jones)

▲日▼▲□▼▲□▼▲□▼ □ ○○○

$$\blacktriangleright V_n^+ = M_0' \cap M_n$$

$$\blacktriangleright V_n^- = M_1' \cap M_{n+1}$$

action of planar operad from Jones '99

A subfactor planar algebra is the standard invariant of an (extremal, finite-index) subfactor (Popa, GJS, JSW, KS).

- ▶ dim $V_0^{\pm} = 1$
- ▶ dim $V_n^{\pm} < \infty \forall n$
- Involution
- Positive definite trace
- Spherical

The standard invariant of an (extremal, finite index) II_1 subfactor is a subfactor planar algebra (Jones)

$$\blacktriangleright V_n^+ = M_0' \cap M_n$$

$$\blacktriangleright V_n^- = M_1' \cap M_{n+1}$$

action of planar operad from Jones '99

A subfactor planar algebra is the standard invariant of an (extremal, finite-index) subfactor (Popa, GJS, JSW, KS). Subfactor planar algebra \leftrightarrow extremal subfactor. *Problem:* Constructing SPAs is hard (BDG, Peters, BMPS, B).

Bipartite graph planar algebra P_Γ

- Γ is any locally finite bipartite graph
- Fix a positive weight vector μ of Γ
- For finite graphs (only) μ is unique
- This is an (unbounded) eigenfunction of the adjacency matrix

A D M 4 目 M 4 日 M 4 1 H 4

Bipartite graph planar algebra P_Γ

- Γ is any locally finite bipartite graph
- Fix a positive weight vector μ of Γ
- For finite graphs (only) μ is unique
- This is an (unbounded) eigenfunction of the adjacency matrix
- V⁺_n has basis of length-2n loops on Γ, starting at an even vertex
- V_n^- has basis of length-2n loops starting on an odd vertex

A D M 4 目 M 4 日 M 4 1 H 4

Bipartite graph planar algebra P_r

- Γ is any locally finite bipartite graph
- Fix a positive weight vector μ of Γ
- For finite graphs (only) μ is unique
- This is an (unbounded) eigenfunction of the adjacency matrix
- V⁺_n has basis of length-2n loops on Γ, starting at an even vertex
- V_n^- has basis of length-2n loops starting on an odd vertex
- > action of planar operad determined by Γ , μ : Jones '99

- V_0^{\pm} has dimension equal to the number of even/odd vertices
- If the graph is infinite, then each V_n^{\pm} is infinite dimensional

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

- V_0^{\pm} has dimension equal to the number of even/odd vertices
- If the graph is infinite, then each V_n^{\pm} is infinite dimensional
- However, BGPAs have an involution and a positive definite trace

- V_0^{\pm} has dimension equal to the number of even/odd vertices
- If the graph is infinite, then each V_n^{\pm} is infinite dimensional
- However, BGPAs have an involution and a positive definite trace

Theorem (B '10):

Let Γ be a locally finite graph with positive weight vector μ , A a planar subalgebra of P_{Γ} with $\dim A \cap V_0^{\pm} = 1$.

Then A is a subfactor planar algebra: the other necessary properties are inherited from P_{Γ} .

This is straightforward when Γ is finite, but when Γ is infinite it must be shown that $A \cap V_n^{\pm}$ is finite dimensional.

- V_0^{\pm} has dimension equal to the number of even/odd vertices
- If the graph is infinite, then each V_n^{\pm} is infinite dimensional
- However, BGPAs have an involution and a positive definite trace

Theorem (B '10):

Let Γ be a locally finite graph with positive weight vector μ , A a planar subalgebra of P_{Γ} with $\dim A \cap V_0^{\pm} = 1$.

Then A is a subfactor planar algebra: the other necessary properties are inherited from P_{Γ} .

This is straightforward when Γ is finite, but when Γ is infinite it must be shown that $A \cap V_n^{\pm}$ is finite dimensional.

Caveat: If Γ is infinite, then A might not be spherical. However, A still corresponds to a subfactor (Burns)-the subfactor is extremal iff A is spherical.

- V_0^{\pm} has dimension equal to the number of even/odd vertices
- If the graph is infinite, then each V_n^{\pm} is infinite dimensional
- However, BGPAs have an involution and a positive definite trace

Theorem (B '10):

Let Γ be a locally finite graph with positive weight vector μ , A a planar subalgebra of P_{Γ} with $\dim A \cap V_0^{\pm} = 1$.

Then A is a subfactor planar algebra: the other necessary properties are inherited from P_{Γ} .

This is straightforward when Γ is finite, but when Γ is infinite it must be shown that $A \cap V_n^{\pm}$ is finite dimensional.

Caveat: If Γ is infinite, then A might not be spherical. However, A still corresponds to a subfactor (Burns)-the subfactor is extremal iff A is spherical.

So we can find new subfactor planar algebras as small planar subalgebras of BGPAs. This provides new subfactors.

Automorphisms of planar algebras

Problem: finding small planar subalgebras of BGPAs is hard. Plan: automorphisms of planar algebras (Gupta, Loi, Svendsen, Bisch, B).

A D M 4 目 M 4 日 M 4 1 H 4

Automorphisms of planar algebras

Problem: finding small planar subalgebras of BGPAs is hard. Plan: automorphisms of planar algebras (Gupta, Loi, Svendsen, Bisch, B).

- P is a planar algebra.
 - α is an invertible graded linear map on V_n^{\pm}
 - $\alpha \in \operatorname{Aut} P$ if it commutes with the entire planar operad

▶ $G \subset Aut P \rightarrow P^G$ is closed under the planar operad

Automorphisms of planar algebras

Problem: finding small planar subalgebras of BGPAs is hard. Plan: automorphisms of planar algebras (Gupta, Loi, Svendsen, Bisch, B).

P is a planar algebra.

- α is an invertible graded linear map on V_n^{\pm}
- $\alpha \in AutP$ if it commutes with the entire planar operad
- ▶ $G \subset \operatorname{Aut} P \to P^G$ is closed under the planar operad

To show $\alpha \in \operatorname{Aut} P$, it suffices to show that it commutes with a convenient generating set of the planar operad. In general computing $\operatorname{Aut} P$ is hard, but the group may be completely described when P is a BGPA (B '10). $\operatorname{Aut} P$ is generated by

- Graph automorphism operators (from $Aut\Gamma$)
- Multiplication operators (from unitaries in V_1^+)

Bisch-Haagerup subfactors

Let G be a group generated by two finite subgroups H and K, with H ∩ K = {e}

A D M 4 目 M 4 日 M 4 1 H 4

- ▶ Let *H* and *K* have outer actions on some *II*₁ factor *M*
- Fixed point subfactor: $M^H \subset M$
- Crossed product subfactor: $M \subset M \rtimes K$

Bisch-Haagerup subfactors

- Let G be a group generated by two finite subgroups H and K, with H ∩ K = {e}
- Let H and K have outer actions on some II_1 factor M
- Fixed point subfactor: $M^H \subset M$
- Crossed product subfactor: $M \subset M \rtimes K$
- Composite subfactor (BH) $M^H \subset M \rtimes K$
- Principal graph determined by $G \subset \text{Out}M$
- Planar algebra determined by groups plus scalar 3-cocycle obstruction: ω ∈ H³(G, S¹)
- IRF model for planar algebra (BDG)
- ▶ Determined by subfactor pair: $M \subset M \rtimes H$, $M \subset M \rtimes K$

Generalized Bisch-Haagerup subfactors

• Let G be a group generated by two finite subgroups H and K, with $H \cap K = A$.

$$H \subset G$$

• Nondegenerate group quadrilateral: \cup \cup

$$A \subset K$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Generalized Bisch-Haagerup subfactors

Let G be a group generated by two finite subgroups H and K, with $H \cap K = A$.

 $H \subset G$ $\bullet \text{ Nondegenerate group quadrilateral:} \cup \cup \qquad \cup$ $A \subset K$

Let M be a II₁ factor admitting outer actions of H and K which agree on A, such that G is the group generated by H and K in OutM

▲日▼▲□▼▲□▼▲□▼ □ ○○○

• $M \rtimes A \subset M \rtimes H$ and $M \rtimes A \subset M \rtimes K$ are subfactors.

Generalized Bisch-Haagerup subfactors

Let G be a group generated by two finite subgroups H and K, with H ∩ K = A.

► Nondegenerate group quadrilateral: $H \subset G$ $\cup \qquad \cup$ $A \subset K$

- Let M be a II₁ factor admitting outer actions of H and K which agree on A, such that G is the group generated by H and K in OutM
- $M \rtimes A \subset M \rtimes H$ and $M \rtimes A \subset M \rtimes K$ are subfactors.
- Let N be the result of the downward basic construction on M ⋊ A ⊂ M ⋊ H. (i.e. M ⋊ H is isomorphic to the basic construction on N ⊂ M ⋊ A).
- ► Then N ⊂ M ⋊ K is the group type subfactor obtained from the above group quadrilateral.
- ▶ This is a generalization of the Bisch-Haagerup construction $M^H \subset M \rtimes K$.

Irreducible planar fixed point subfactors

The class of planar fixed point subfactors is very large, but a few assumptions make it more tractible.

- Let Γ be a bipartite graph with no multiple edges.
- Let $G \subset \operatorname{Aut} P_{\Gamma}$ act transitively on V_1^+ .

Irreducible planar fixed point subfactors

The class of planar fixed point subfactors is very large, but a few assumptions make it more tractible.

- Let Γ be a bipartite graph with no multiple edges.
- Let $G \subset \operatorname{Aut} P_{\Gamma}$ act transitively on V_1^+ .
- Then the planar fixed point subfactor obtained from P^G_r is a generalized Bisch-Haagerup subfactor (group quadrilateral).
- Moreover, the planar algebra of any such subfactor may be obtained in this way (B '10).

All of these irreducible subfactors have (composite) integer index, and have an intermediate subfactor.

Cocycle perturbations

- Let ρ be a map from some group G to AutP_Γ, such that P^G_Γ produces a subfactor.
- Let E be the center of the group of multiplication operators

 (a normal subgroup of AutP_Γ)
- Let α be a map from G to E such that $\alpha_{gh} = \alpha_g \rho_g(\alpha_h)$.
- Equivalently, α is a 1-coycle for G with coefficients in E.
- This is a perturbation of the G-action, producing a (potentially) different SPA with the same principal graph.

Cocycle perturbations

- Let ρ be a map from some group G to AutP_Γ, such that P^G_Γ produces a subfactor.
- Let E be the center of the group of multiplication operators

 (a normal subgroup of AutP_Γ)
- Let α be a map from G to E such that $\alpha_{gh} = \alpha_g \rho_g(\alpha_h)$.
- Equivalently, α is a 1-coycle for G with coefficients in E.
- This is a perturbation of the G-action, producing a (potentially) different SPA with the same principal graph.
- Generalized Bisch-Haagerup planar algebras are determined by (A, H, K, G) plus ω ∈ H³(G, S¹), with the restriction that ω has trivial image under the inflation map H³(G, S¹) →³ (H *_A K, S¹).
- ▶ From some elementary group cohomology, all such cocycles can be obtained from elements of H¹(G, E) (c.f. Jones)
- This sometimes allows enumeration of BH subfactors with specified G, H, K (c.f. IK '93)

Enumeration of Bisch-Haagerup subfactors

Taking $G = A_4$ produces a Bisch-Haagerup subfactor ($H = Z_2$, $K = Z_3$, $G = A_4$). Here $H^1(G, E) = Z_2$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Enumeration of Bisch-Haagerup subfactors

Taking $G = A_4$ produces a Bisch-Haagerup subfactor ($H = Z_2$, $K = Z_3$, $G = A_4$). Here $H^1(G, E) = Z_2$. The principal graphs of the subfactor are

Enumeration of Bisch-Haagerup subfactors

Taking $G = A_4$ produces a Bisch-Haagerup subfactor ($H = Z_2$, $K = Z_3$, $G = A_4$). Here $H^1(G, E) = Z_2$. The principal graphs of the subfactor are

- The cohomology computation implies that there are two (hyperfinite) subfactors with this principal graph.
- ► They are distinguished by whether or not the representation of G in OutR lifts to AutR.

Wildness at $3 + 2\sqrt{2}$

Reducible planar fixed point subfactors are more complicated

- They are determined by the group and the graph, not just the group
- They need not be integer index
- Smallest index: $3 + 2\sqrt{2}$
- Graph: tree branching 3 times at each even vertex, 2 times at each odd vertex

A D M 4 目 M 4 日 M 4 1 H 4

Wildness at $3 + 2\sqrt{2}$

Reducible planar fixed point subfactors are more complicated

- They are determined by the group and the graph, not just the group
- They need not be integer index
- Smallest index: $3 + 2\sqrt{2}$
- Graph: tree branching 3 times at each even vertex, 2 times at each odd vertex

This is the smallest possible index for reducible extremal subfactors (PP)

A D M 4 目 M 4 日 M 4 1 H 4

- Color the edges red and blue
- Every even vertex contacts two red edges and one blue
- Every odd vertex contacts one red and one blue

Wildness at $3 + 2\sqrt{2}$

Reducible planar fixed point subfactors are more complicated

- They are determined by the group and the graph, not just the group
- They need not be integer index
- Smallest index: $3 + 2\sqrt{2}$
- Graph: tree branching 3 times at each even vertex, 2 times at each odd vertex

This is the smallest possible index for reducible extremal subfactors (PP)

- Color the edges red and blue
- Every even vertex contacts two red edges and one blue
- Every odd vertex contacts one red and one blue
- Any vertex-transitive color-preserving group of graph automorphisms produces a subfactor
- Infinitely many of these produce mutually nonisomorphic subfactors