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Composition of group-subgroup subfactors

� Planar algebras and subfactors

� Automorphisms of planar algebras

� Planar fixed-point subfactors

� Examples and applications
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� Standard invariant → planar algebra (Jones)

� Planar algebra → standard invariant (Popa)

Today: Construct planar algebras abstractly, obtain new subfactors.
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Planar algebra:

� Graded vector space V±
n , n ≥ 0

� Associative action of the planar operad

Planar operad:

� Planar tangles

� Labelled internal disks

� Checkerboard shading

� Distinguished boundary region

� Composition via gluing
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Subfactor planar algebra:

� dimV±
0 = 1

� dimV±
n < ∞∀n

� Involution

� Positive definite trace

� Spherical

The standard invariant of an (extremal, finite index) II1 subfactor
is a subfactor planar algebra (Jones)

� V +
n = M ′

0 ∩ Mn

� V−
n = M ′

1 ∩ Mn+1

� action of planar operad from Jones ’99

A subfactor planar algebra is the standard invariant of an
(extremal, finite-index) subfactor (Popa, GJS, JSW, KS).
Subfactor planar algebra ↔ extremal subfactor.
Problem: Constructing SPAs is hard (BDG, Peters, BMPS, B).
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Bipartite graph planar algebra PΓ

� Γ is any locally finite bipartite graph

� Fix a positive weight vector μ of Γ

� For finite graphs (only) μ is unique

� This is an (unbounded) eigenfunction of the adjacency matrix

� V +
n has basis of length-2n loops on Γ, starting at an even

vertex

� V−
n has basis of length-2n loops starting on an odd vertex

� action of planar operad determined by Γ, μ: Jones ’99
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� V±
0 has dimension equal to the number of even/odd vertices

� If the graph is infinite, then each V±
n is infinite dimensional

� However, BGPAs have an involution and a positive definite
trace

Theorem (B ’10):
Let Γ be a locally finite graph with positive weight vector μ, A a
planar subalgebra of PΓ with dimA ∩ V±

0 = 1.
Then A is a subfactor planar algebra: the other necessary
properties are inherited from PΓ.
This is straightforward when Γ is finite, but when Γ is infinite it
must be shown that A ∩ V±

n is finite dimensional.

Caveat: If Γ is infinite, then A might not be spherical. However, A
still corresponds to a subfactor (Burns)–the subfactor is extremal
iff A is spherical.

So we can find new subfactor planar algebras as small planar
subalgebras of BGPAs. This provides new subfactors.
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Automorphisms of planar algebras

Problem: finding small planar subalgebras of BGPAs is hard.
Plan: automorphisms of planar algebras (Gupta, Loi, Svendsen,
Bisch, B).
P is a planar algebra.

� α is an invertible graded linear map on V±
n

� α ∈ AutP if it commutes with the entire planar operad

� G ⊂ AutP → PG is closed under the planar operad

To show α ∈ AutP , it suffices to show that it commutes with a
convenient generating set of the planar operad.
In general computing AutP is hard, but the group may be
completely described when P is a BGPA (B ’10).
AutP is generated by

� Graph automorphism operators (from AutΓ)

� Multiplication operators (from unitaries in V +
1 )
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Bisch-Haagerup subfactors

� Let G be a group generated by two finite subgroups H and K ,
with H ∩ K = {e}

� Let H and K have outer actions on some II1 factor M

� Fixed point subfactor: MH ⊂ M

� Crossed product subfactor: M ⊂ M � K

� Composite subfactor (BH) MH ⊂ M � K

� Principal graph determined by G ⊂ OutM
� Planar algebra determined by groups plus scalar 3-cocycle

obstruction: ω ∈ H3(G ,S1)

� IRF model for planar algebra (BDG)

� Determined by subfactor pair: M ⊂ M � H, M ⊂ M � K
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Generalized Bisch-Haagerup subfactors

� Let G be a group generated by two finite subgroups H and K ,
with H ∩ K = A.

� Nondegenerate group quadrilateral:
H ⊂ G
∪ ∪
A ⊂ K

� Let M be a II1 factor admitting outer actions of H and K
which agree on A, such that G is the group generated by H
and K in OutM

� M � A ⊂ M � H and M � A ⊂ M � K are subfactors.

� Let N be the result of the downward basic construction on
M � A ⊂ M � H. (i.e. M � H is isomorphic to the basic
construction on N ⊂ M � A).

� Then N ⊂ M � K is the group type subfactor obtained from
the above group quadrilateral.

� This is a generalization of the Bisch-Haagerup construction
MH ⊂ M � K .
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assumptions make it more tractible.
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Irreducible planar fixed point subfactors

The class of planar fixed point subfactors is very large, but a few
assumptions make it more tractible.

� Let Γ be a bipartite graph with no multiple edges.

� Let G ⊂ AutPΓ act transitively on V +
1 .

� Then the planar fixed point subfactor obtained from PG
Γ is a

generalized Bisch-Haagerup subfactor (group quadrilateral).

� Moreover, the planar algebra of any such subfactor may be
obtained in this way (B ’10).

All of these irreducible subfactors have (composite) integer index,
and have an intermediate subfactor.
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� Let ρ be a map from some group G to AutPΓ, such that PG
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� Let E be the center of the group of multiplication operators
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� Let α be a map from G to E such that αgh = αgρg (αh).

� Equivalently, α is a 1-coycle for G with coefficients in E .

� This is a perturbation of the G -action, producing a
(potentially) different SPA with the same principal graph.



Cocycle perturbations

� Let ρ be a map from some group G to AutPΓ, such that PG
Γ

produces a subfactor.

� Let E be the center of the group of multiplication operators
(a normal subgroup of AutPΓ)

� Let α be a map from G to E such that αgh = αgρg (αh).

� Equivalently, α is a 1-coycle for G with coefficients in E .

� This is a perturbation of the G -action, producing a
(potentially) different SPA with the same principal graph.

� Generalized Bisch-Haagerup planar algebras are determined by
(A,H,K ,G ) plus ω ∈ H3(G ,S1), with the restriction that ω
has trivial image under the inflation map
H3(G ,S1) →3 (H ∗A K ,S1).

� From some elementary group cohomology, all such cocycles
can be obtained from elements of H1(G ,E ) (c.f. Jones)

� This sometimes allows enumeration of BH subfactors with
specified G , H, K (c.f. IK ’93)
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Taking G = A4 produces a Bisch-Haagerup subfactor (H = Z2,
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� The cohomology computation implies that there are two
(hyperfinite) subfactors with this principal graph.

� They are distinguished by whether or not the representation of
G in OutR lifts to AutR .
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Wildness at 3 + 2
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2
Reducible planar fixed point subfactors are more complicated

� They are determined by the group and the graph, not just the
group

� They need not be integer index

� Smallest index: 3 + 2
√

2

� Graph: tree branching 3 times at each even vertex, 2 times at
each odd vertex

This is the smallest possible index for reducible extremal subfactors
(PP)

� Color the edges red and blue

� Every even vertex contacts two red edges and one blue

� Every odd vertex contacts one red and one blue

� Any vertex-transitive color-preserving group of graph
automorphisms produces a subfactor

� Infinitely many of these produce mutually nonisomorphic
subfactors


