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Paths that cross

1. Symplectic geometry and geometric quantization:

Guillemin–Sternberg (-Dirac) conjecture [Q,RG] = 0

‘Geometric quantization commutes with symplectic reduction’

Reformulation in terms of equivariant index theory (Bott)

Defined and proved for compact groups and manifolds

2. Operator algebras and equivariant K-theory:

Baum–Connes conjecture µr : KG
• (EG)

∼=→ K•(C
∗
r (G))

Interesting for noncompact groups G (and proper actions)

3. Functoriality of quantization

Can symplectic data ‘neatly’ be mapped into operator data?

Are geometric and deformation quantization perhaps related?
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The Janus faces of quantization

1. Heisenberg (1925): classical observables  matrices

2. Schrödinger (1926): classical states  wave functions

3. von Neumann (1932): unification through Hilbert space

matrices → operators, wave functions → vectors

1. Classical observables form Poisson algebra: commutative algebra/C
and also Lie algebra with Leibniz rule [fg, h] = f [g, h] + [f, h]g

Quantum observables form C*-algebra ⇒ first face:

Deformation quantization: Poisson algebra  C*-algebra

2. Classical states form Symplectic manifold (M,ω) ⇒ 2nd face:

Geometric quantization: symplectic manifold  Hilbert space

Symplectic form makes C∞(M) Poisson algebra w.r.t. fg(x) = f(x)g(x)
and {f, g} = ω(ξf , ξg), Hamiltonian vector field ξf : ω(ξf , η) = ηf

Poisson manifold has Poisson algebra structure on C∞(M), ibid.
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Key examples of quantization

1. Deformation quantization (Rieffel)

Lie group G, Lie algebra g, Poisson mfd g∗: for X ∈ g,

X̂ ∈ C∞(g∗) defined by X̂(θ) = θ(X), {X̂, Ŷ } = [̂X, Y ]

Quantization of Poisson algebra C∞(g∗) is C*-algebra C∗(G)

2. Traditional geometric quantization (Kostant, Souriau)

compact symplectic manifold (M,ω) such that [ω] ∈ H2(M,Z)

⇒ C-line bundle L→M plus connection ∇L with F (∇L) = 2πiω

⇒ almost complex structure J s.t. g(ξ, η) = ω(ξ, Jη) is metric

⇒ Hilbert space Q(M,ω, J) = {s ∈ Γ(L) | ∇L
Jξ−iξs = 0, ξ ∈ X(M)}

3. Postmodern geometric quantization (Bott)

QB(M,ω, J) is integer index(D/ L) := dim(ker(D/ L
+))− dim(ker(D/ L

−))

D/ L is Spinc Dirac operator on M defined by J coupled to L
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Guillemin-Sternberg conjecture

G �M : Lie group action on symplectic M s.t. momentum map

Φ : M → g∗, ΦX(x) = 〈Φ(x), X〉 yields g-action: ξMX = ξΦX
(X ∈ g)

1. Symplectic reduction: M//G = Φ−1(0)/G has symplectic form ωG

2. Geometric quantization: Q(M//G, ωG) exist if Q(M,ω) exists;

∃ line bundle (L//G→M//G,∇L//G) with F (∇L//G) = 2πiωG

‘Quantization commutes with reduction’: is this the same as

1. Equivariant unitary geometric quantization G � Q(M,ω) through

Kostant’s formula Xs = (∇L
ξM
X
− 2πiΦX)s, s ∈ Q(M,ω) ⊂ Γ(L)

2. ‘Quantum reduction’: Q(M,ω)//G = Q(M,ω)G (Dirac) ?

In other words: Q(M//G, ωG)
?∼= Q(M, ω)G (as Hilbert spaces)

Proved for M compact Kähler and G compact by Guillemin&Sternberg
More general symplectic manifolds require reformulation
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Guillemin-Sternberg-Bott conjecture

1. Symplectic reduction: (M//G, ωG), same as before

2. Bott’s geometric quantization: QB(M//G, ωG) = index(D/ L//G)

Bott’s reformulation of G-S conjecture: is this the same as

1. Equivariant geometric quantization (G&M compact!):

QB(M,ω) = indexG(D/ L) = [ker(D/ L
+)]− [ker(D/ L

−)] ∈ R(G)

2. Quantum reduction: QB(M,ω)G, ([V ]−[W ])G = dim(V G)−dim(WG)?

In other words, G-S-B conjecture: (indexG(D/ L))G = index(D/ L//G)

• Proved by many people in mid 1990s (Meinrenken, . . . )

For noncompact G and M need substantial reformulation of G-S-B
conjecture, under assumptions: G �M proper and M/G compact
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Noncompact groups and manifolds

Compact  noncompact dictionary (suggested by Baum-Connes):

• Representation ring R(G)  K0(C
∗(G)) ∼= KK0(C, C∗(G))

• indexG(D/ ) ∈ R(G)  µGM([D/ ]) ∈ K0(C
∗(G)) N.B. C∗(G) not C∗r (G)!

[D/ ] ∈ KG
0 (M) ∼= KKG

0 (C0(M),C) equivariant K-homology of M

µGM : KG
0 (M)→ K0(C

∗(G)) ‘unreduced’ analytic assembly map (Bunke)

• Quantum reduction R(G)→ Z  K0(C
∗(G))

x 7→xG

−→ K0(C) ∼= Z
induced by map C∗(G)→ C determined by trivial rep of G

⇒ Generalized G-S-B conjecture: µGM

([
D/ L
])G

= index
(
D/ L//G

)
Proved by Hochs-Landsman (2008) if G contains cocompact
discrete normal subgroup, general proof by Mathai-Zhang (2010)
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Epilogue: functorial quantization

• ‘Explains’ generalized Guillemin-Sternberg-Bott conjecture
as a special instance of functoriality of quantization

• Unifies the Janus faces of quantization into a functor Q

1. Domain of Q: Weinstein’s category of (quantizable) ‘dual pairs’

(a) (integrable) Poisson manifolds as objects

(b) (regular) symplectic bimodules [P1 ←M → P2]∼= as arrows

2. Codomain of Q: Kasparov’s category KK0

(a) C*-algebras as objects

(b) [Graded Hilbert bimodules A � E 	 B with D/ ]h as arrows

3. Hypothetical quantization functor (based on examples only)

(a) Deformation quantization: Pi  C*-algebra Ai

(b) Geometric quantization: M  “[Spinc Dirac operator D/ L]?”

(c) Functorial quantization: P1 ←M → P2  [D/ L] ∈ KK0(A1, A2)
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Examples of functorial quantization

1. Symplectic manifold M yields dual pair pt←M → pt

(a) Deformation quantization: pt C
(b) Geometric quantization: (M,ω) [D/ L]?

(c) Functorial quantization: (pt ← M → pt)  [D/ L] ∈ KK0(C,C)

Identification KK0(C,C) ∼= Z identifies [D/ L] ∼= index(D/ L)

2. Hamiltonian group action G �M generated by momentum map

Φ : M → g∗ yields dual pair pt←M
Φ→ g∗ (assume G connected)

(a) Deformation quantization: pt C, g∗  C∗(G)

(b) Geometric quantization: (M,ω) [D/ L]?

(c) Functorial quantization: (pt←M → g∗) [D/ L] ∈ KK0(C, C∗(G))

KK0(C, C∗(G)) ∼= K0(C
∗(G)) identifies [D/ L] ∼= µGM([D/ L]KG

0 (M))

3. (g∗ ←↩ 0→ pt) [D/ = 0] ∈ KK0(C
∗(G),C), with [C∗(G) � C 	 C]
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Guillemin-Sternberg-Bott revisited

1. Composition ◦ of dual pairs reproduces symplectic reduction:

(pt←M → g∗) ◦ (g∗ ←↩ 0→ pt) ∼= pt←M//G→ pt

General: (P →M ← Q)◦(Q→ N ← R) = (P → (M×QN)/F0 ← R)

2. Kasparov product reproduces quantum reduction:

xKK0(C,C∗(G)) ×KK [D/ = 0]KK0(C∗(G),C) = xG ∈ KK0(C,C)

i.e. map K0(C
∗(G))

x 7→xG

−→ Z given as product in category KK0

3. Recall: Q(pt←M//G→ pt) = index(D/ L//G)

Q(pt←M → g∗) = µGM([D/ L]KG
0 (M))

Q(g∗ ←↩ 0→ pt) = [D/ = 0]KK0(C∗(G),C)

⇒ Functoriality of quantization map Q gives G-S-B conjecture:

Q(pt←M → g∗) ◦Q(g∗ ←↩ 0→ pt) = Q(pt←M//G→ pt)

is the same as µGM

([
D/ L
])G

= index
(
D/ L//G

)


