Functoriality of quantization: a KK-theoretic approach

Klaas Landsman

Institute for Mathematics, Astrophysics and Particle Physics
Radboud University Nijmegen
Faculty of Science
landsman@math.ru.nl

ECOAS, Dartmouth College, 23 October 2010

Literature

- V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67, 515-538 (1982)
- P. Baum, A. Connes, and N. Higson, Classifying space for proper actions and K-theory of group C*-algebras, Contemp. Math. 167, 240-291 (1994)
- Y. Tian and W. Zhang, An analytic proof of the geometric quantization conjecture of Guillemin-Sternberg, Invent. Math. 132, 229-259 (1998)
- N.P. Landsman, Functorial quantization and the Guillemin-Sternberg conjecture, Twenty Years of Bialowieza (2005), arXiv:math-ph/030705
- P. Hochs and N.P. Landsman, The Guillemin-Sternberg conjecture for noncompact groups and spaces, J. of K-Theory 1, 473-533 (2008), arXiv:math-ph/0512022
- P. Hochs, Quantisation commutes with reduction for cocompact Hamiltonian group actions, PhD Thesis, Radboud University Nijmegen (2008)
- V. Mathai and W. Zhang, with an appendix by U. Bunke, Geometric quantization for proper actions, Adv. Math. 225, 1224-1247 (2010), arXiv:0806.3138

Paths that cross

1. Symplectic geometry and geometric quantization:

Guillemin-Sternberg (-Dirac) conjecture $\left[Q, R_{G}\right]=0$
'Geometric quantization commutes with symplectic reduction' Reformulation in terms of equivariant index theory (Bott) Defined and proved for compact groups and manifolds
2. Operator algebras and equivariant K-theory:

Baum-Connes conjecture $\mu_{r}: K_{\bullet}^{G}(\underline{E} G) \stackrel{\cong}{\rightrightarrows} K_{\bullet}\left(C_{r}^{*}(G)\right)$
Interesting for noncompact groups G (and proper actions)
3. Functoriality of quantization

Can symplectic data 'neatly' be mapped into operator data? Are geometric and deformation quantization perhaps related?

The Janus faces of quantization

1. Heisenberg (1925): classical observables \rightsquigarrow matrices
2. Schrödinger (1926): classical states \rightsquigarrow wave functions
3. von Neumann (1932): unification through Hilbert space matrices \rightarrow operators, wave functions \rightarrow vectors
4. Classical observables form Poisson algebra: commutative algebra/ \mathbb{C} and also Lie algebra with Leibniz rule $[f g, h]=f[g, h]+[f, h] g$ Quantum observables form C*-algebra \Rightarrow first face:
Deformation quantization: Poisson algebra $\rightsquigarrow \mathrm{C}^{*}$-algebra
5. Classical states form Symplectic manifold $(M, \omega) \Rightarrow$ 2nd face: Geometric quantization: symplectic manifold \rightsquigarrow Hilbert space Symplectic form makes $C^{\infty}(M)$ Poisson algebra w.r.t. $f g(x)=f(x) g(x)$ and $\{f, g\}=\omega\left(\xi_{f}, \xi_{g}\right)$, Hamiltonian vector field $\xi_{f}: \omega\left(\xi_{f}, \eta\right)=\eta f$
Poisson manifold has Poisson algebra structure on $C^{\infty}(M)$, ibid.

Key examples of quantization

1. Deformation quantization (Rieffel)

Lie group G, Lie algebra \mathfrak{g}, Poisson $\operatorname{mfd} \mathfrak{g}^{*}$: for $X \in \mathfrak{g}$, $\hat{X} \in C^{\infty}\left(\mathfrak{g}^{*}\right)$ defined by $\hat{X}(\theta)=\theta(X),\{\hat{X}, \hat{Y}\}=\widehat{[X, Y]}$
Quantization of Poisson algebra $C^{\infty}\left(\mathfrak{g}^{*}\right)$ is C^{*}-algebra $C^{*}(G)$
2. Traditional geometric quantization (Kostant, Souriau)
compact symplectic manifold (M, ω) such that $[\omega] \in H^{2}(M, \mathbb{Z})$
$\Rightarrow \mathbb{C}$-line bundle $L \rightarrow M$ plus connection ∇^{L} with $F\left(\nabla^{L}\right)=2 \pi i \omega$
\Rightarrow almost complex structure J s.t. $g(\xi, \eta)=\omega(\xi, J \eta)$ is metric
\Rightarrow Hilbert space $Q(M, \omega, J)=\left\{s \in \Gamma(L) \mid \nabla_{J \xi-i \xi}^{L} s=0, \xi \in \mathbf{X}(M)\right\}$
3. Postmodern geometric quantization (Bott)
$Q_{B}(M, \omega, J)$ is integer index $\left(\not D^{L}\right):=\operatorname{dim}\left(\operatorname{ker}\left(\not D_{+}^{L}\right)\right)-\operatorname{dim}\left(\operatorname{ker}\left(\not D_{-}^{L}\right)\right)$
$\not D^{L}$ is Spin^{c} Dirac operator on M defined by J coupled to L

Guillemin-Sternberg conjecture

$G \circlearrowright M:$ Lie group action on symplectic M s.t. momentum map $\Phi: M \rightarrow \mathfrak{g}^{*}, \Phi_{X}(x)=\langle\Phi(x), X\rangle$ yields \mathfrak{g}-action: $\xi_{X}^{M}=\xi_{\Phi_{X}}(X \in \mathfrak{g})$

1. Symplectic reduction: $M / / G=\Phi^{-1}(0) / G$ has symplectic form ω_{G}
2. Geometric quantization: $Q\left(M / / G, \omega_{G}\right)$ exist if $Q(M, \omega)$ exists; \exists line bundle $\left(L / / G \rightarrow M / / G, \nabla^{L / / G}\right)$ with $F\left(\nabla^{L / / G}\right)=2 \pi i \omega_{G}$
'Quantization commutes with reduction': is this the same as
3. Equivariant unitary geometric quantization $G \circlearrowright Q(M, \omega)$ through Kostant's formula $X s=\left(\nabla_{\xi_{X}^{M}}^{L}-2 \pi i \Phi_{X}\right) s, s \in Q(M, \omega) \subset \Gamma(L)$
4. 'Quantum reduction': $Q(M, \omega) / / G=Q(M, \omega)^{G}$ (Dirac) ?

In other words: $\mathbf{Q}\left(\mathbf{M} / / \mathbf{G}, \omega_{\mathbf{G}}\right) \stackrel{?}{\cong} \mathbf{Q}(\mathbf{M}, \omega)^{\mathbf{G}}$ (as Hilbert spaces)
Proved for M compact Kähler and G compact by Guillemin\&Sternberg More general symplectic manifolds require reformulation

Guillemin-Sternberg-Bott conjecture

1. Symplectic reduction: $\left(M / / G, \omega_{G}\right)$, same as before
2. Bott's geometric quantization: $Q_{B}\left(M / / G, \omega_{G}\right)=\operatorname{index}\left(\not D^{L / / G}\right)$

Bott's reformulation of G-S conjecture: is this the same as

1. Equivariant geometric quantization ($G \& M$ compact!):

$$
Q_{B}(M, \omega)=\operatorname{index}_{G}\left(\not D^{L}\right)=\left[\operatorname{ker}\left(\not D_{+}^{L}\right)\right]-\left[\operatorname{ker}\left(\not D_{-}^{L}\right)\right] \in R(G)
$$

2. Quantum reduction: $Q_{B}(M, \omega)^{G},([V]-[W])^{G}=\operatorname{dim}\left(V^{G}\right)-\operatorname{dim}\left(W^{G}\right)$?

In other words, G-S-B conjecture: $\left(\text { index }_{\mathbf{G}}\left(\boldsymbol{D}^{\mathbf{L}}\right)\right)^{\mathbf{G}}=\operatorname{index}\left(\boldsymbol{D}^{\mathbf{L} / \mathbf{G}}\right)$

- Proved by many people in mid 1990s (Meinrenken, ...)

For noncompact G and M need substantial reformulation of G-S-B conjecture, under assumptions: $G \circlearrowright M$ proper and M / G compact

Noncompact groups and manifolds

Compact \rightsquigarrow noncompact dictionary (suggested by Baum-Connes):

- Representation ring $R(G) \rightsquigarrow K_{0}\left(C^{*}(G)\right) \cong K K_{0}\left(\mathbb{C}, C^{*}(G)\right)$
- $\operatorname{index}_{G}(\not D) \in R(G) \rightsquigarrow \mu_{M}^{G}([\not D]) \in K_{0}\left(C^{*}(G)\right)$ N.B. $C^{*}(G) \operatorname{not} C_{r}^{*}(G)$! $[\not D] \in K_{0}^{G}(M) \cong K K_{0}^{G}\left(C_{0}(M), \mathbb{C}\right)$ equivariant K-homology of M $\mu_{M}^{G}: K_{0}^{G}(M) \rightarrow K_{0}\left(C^{*}(G)\right)$ 'unreduced' analytic assembly map (Bunke)
- Quantum reduction $R(G) \rightarrow \mathbb{Z} \rightsquigarrow K_{0}\left(C^{*}(G)\right) \xrightarrow{x \mapsto x^{G}} K_{0}(\mathbb{C}) \cong \mathbb{Z}$ induced by map $C^{*}(G) \rightarrow \mathbb{C}$ determined by trivial rep of G \Rightarrow Generalized G-S-B conjecture: $\mu_{M}^{G}\left(\left[\not D^{L}\right]\right)^{G}=\operatorname{index}\left(\not D^{L / / G}\right)$

Proved by Hochs-Landsman (2008) if G contains cocompact discrete normal subgroup, general proof by Mathai-Zhang (2010)

Epilogue: functorial quantization

- 'Explains' generalized Guillemin-Sternberg-Bott conjecture as a special instance of functoriality of quantization
- Unifies the Janus faces of quantization into a functor Q

1. Domain of Q: Weinstein's category of (quantizable) 'dual pairs'
(a) (integrable) Poisson manifolds as objects
(b) (regular) symplectic bimodules $\left[P_{1} \leftarrow M \rightarrow P_{2}\right] \cong$ as arrows
2. Codomain of Q: Kasparov's category $K K_{0}$
(a) C*-algebras as objects
(b) [Graded Hilbert bimodules $A \circlearrowright \mathcal{E} \circlearrowleft B$ with $\not D]_{h}$ as arrows
3. Hypothetical quantization functor (based on examples only)
(a) Deformation quantization: $P_{i} \rightsquigarrow \mathbf{C}^{*}$-algebra A_{i}
(b) Geometric quantization: $M \rightsquigarrow "\left[\operatorname{Spin}^{c}\right.$ Dirac operator $\left.\not D^{L}\right]$?"
(c) Functorial quantization: $P_{1} \leftarrow M \rightarrow P_{2} \rightsquigarrow\left[\not D^{L}\right] \in K K_{0}\left(A_{1}, A_{2}\right)$

Examples of functorial quantization

1. Symplectic manifold M yields dual pair $p t \leftarrow M \rightarrow p t$
(a) Deformation quantization: $p t \rightsquigarrow \mathbb{C}$
(b) Geometric quantization: $(M, \omega) \rightsquigarrow\left[\not D^{L}\right]$?
(c) Functorial quantization: $(p t \leftarrow M \rightarrow p t) \rightsquigarrow\left[\not D^{L}\right] \in K K_{0}(\mathbb{C}, \mathbb{C})$ Identification $K K_{0}(\mathbb{C}, \mathbb{C}) \cong \mathbb{Z}$ identifies $\left[\not D^{L}\right] \cong \operatorname{index}\left(\not D^{L}\right)$
2. Hamiltonian group action $G \circlearrowright M$ generated by momentum map $\Phi: M \rightarrow \mathfrak{g}^{*}$ yields dual pair $p t \leftarrow M \xrightarrow{\Phi} \mathfrak{g}^{*}$ (assume G connected)
(a) Deformation quantization: $p t \rightsquigarrow \mathbb{C}, \mathfrak{g}^{*} \rightsquigarrow C^{*}(G)$
(b) Geometric quantization: $(M, \omega) \rightsquigarrow\left[\not D^{L}\right]$?
(c) Functorial quantization: $\left(p t \leftarrow M \rightarrow \mathfrak{g}^{*}\right) \rightsquigarrow\left[\not D^{L}\right] \in K K_{0}\left(\mathbb{C}, C^{*}(G)\right)$

$$
K K_{0}\left(\mathbb{C}, C^{*}(G)\right) \cong K_{0}\left(C^{*}(G)\right) \text { identifies }\left[\not D^{L}\right] \cong \mu_{M}^{G}\left(\left[\not D^{L}\right]_{K_{0}^{G}(M)}\right)
$$

3. $\left(\mathfrak{g}^{*} \hookleftarrow 0 \rightarrow p t\right) \rightsquigarrow[\not D=0] \in K K_{0}\left(C^{*}(G), \mathbb{C}\right)$, with $\left[C^{*}(G) \circlearrowright \mathbb{C} \circlearrowleft \mathbb{C}\right]$

Guillemin-Sternberg-Bott revisited

1. Composition \circ of dual pairs reproduces symplectic reduction:

$$
\left(p t \leftarrow M \rightarrow \mathfrak{g}^{*}\right) \circ\left(\mathfrak{g}^{*} \hookleftarrow 0 \rightarrow p t\right) \cong p t \leftarrow M / / G \rightarrow p t
$$

General: $(P \rightarrow M \leftarrow Q) \circ(Q \rightarrow N \leftarrow R)=\left(P \rightarrow\left(M \times_{Q} N\right) / \mathcal{F}_{0} \leftarrow R\right)$
2. Kasparov product reproduces quantum reduction:

$$
x_{K K_{0}\left(\mathbb{C}, C^{*}(G)\right)} \times_{K K}[\not D=0]_{K K_{0}\left(C^{*}(G), \mathbb{C}\right)}=x^{G} \in K K_{0}(\mathbb{C}, \mathbb{C})
$$

i.e. map $K_{0}\left(C^{*}(G)\right) \xrightarrow{x \rightarrow x^{G}} \mathbb{Z}$ given as product in category $K K_{0}$
3. Recall:

$$
\begin{aligned}
\mathrm{Q}(p t \leftarrow M / / G \rightarrow p t) & =\operatorname{index}\left(\not D^{L / / G}\right) \\
\mathbf{Q}\left(p t \leftarrow M \rightarrow \mathfrak{g}^{*}\right) & =\mu_{M}^{G}\left(\left[\not D^{L}\right]_{K_{0}^{G}(M)}\right) \\
\mathbf{Q}\left(\mathfrak{g}^{*} \hookleftarrow 0 \rightarrow p t\right) & =[\not D=0]_{K K_{0}\left(C^{*}(G), \mathbb{C}\right)}
\end{aligned}
$$

\Rightarrow Functoriality of quantization map Q gives $\mathrm{G}-\mathrm{S}-\mathrm{B}$ conjecture:

$$
\begin{aligned}
\mathbf{Q}\left(p t \leftarrow M \rightarrow \mathfrak{g}^{*}\right) \circ \mathbf{Q}\left(\mathfrak{g}^{*} \hookleftarrow 0 \rightarrow p t\right) & =\mathbf{Q}(p t \leftarrow M / / G \rightarrow p t) \\
\text { is the same as } \quad \mu_{M}^{G}\left(\left[\not D^{L}\right]\right)^{G} & =\operatorname{index}\left(\not D^{L / / G}\right)
\end{aligned}
$$

