Amalgamated free products of C^{*}-algebras with MF property

Presented by
Junhao Shen
(joint work with Qihui Li)

University of New Hampshire

1 Residually Finite Groups

Definition 1.1

A countable group G is a residually finite ($R F$) group
$\Leftrightarrow \forall e \neq g \in G, \exists$ a finite group H and a homomorphism $\rho: G \rightarrow H$, s.t. $\rho(g) \neq e$.
$\Leftrightarrow G$ embeds into $\prod_{k} H_{k}$ for a family of finite groups $\left\{H_{k}\right\}_{k}$
$R F$ groups include: finite group, finite generated abelian group, free groups F_{n}, and $S L_{n}(\mathbb{Z})$.

Remark 1.2 If G is a residually finite group, then

$$
L(G) \hookrightarrow \mathcal{R}^{\omega}
$$

i.e. Connes' embedding problem for $L(G)$ has a "yes" answer.

Remark 1.3 Connes embedding problem asks whether every separable $I I_{1}$ factor can be embedded into \mathcal{R}^{ω}, where \mathcal{R}^{ω} is the untrapower of the hyperfinite $I I_{1}$ factor \mathcal{R}.

Theorem 1.4 (Gruenberg, 1957) Suppose G_{1}, G_{2} are RF. Then $G_{1} * G_{2}$ is $R F$.

Theorem 1.5 (Baumslag, 1963) Suppose that $G_{1} \supseteq H \subseteq G_{2}$, where G_{1}, G_{2} are $R F$ and H is finite. Then the generalized free product of G_{1} and G_{2} with amalgamation over $H, G_{1} *_{H} G_{2}$ is $R F$.

An example of G. Higman in 1951 showed that $G_{1} *_{H} G_{2}$ might not be RF when G_{1}, G_{2} are RF and H is an infinite cyclic group. For example,

$$
G_{1}=\left\langle a, c: a^{-1} c a=c^{2}\right\rangle ; \quad G_{2}=\left\langle b, c: b^{-1} c b=c^{2}\right\rangle ; \quad H=\langle c\rangle .
$$

And

$$
G_{1} *_{H} G_{2}=\left\langle a, b, c: a^{-1} c a=b^{-1} c b=c^{2}\right\rangle
$$

2 Residually Finite Dimensional C*-algebras

Definition 2.1

A separable C^{*}-algebras \mathcal{A} is residually finite dimensional (RFD)
$\Longleftrightarrow \forall 0 \neq x \in \mathcal{A}, \exists$ finite dimensional C^{*}-algebra \mathcal{D} and a^{*}-homomorphism $\rho: \mathcal{A} \rightarrow \mathcal{D}$, s.t. $\rho(x) \neq 0$.
$\Longleftrightarrow \mathcal{A}$ embeds into $\prod_{k} D_{k}$ for finite dimensional C^{*}-algebras $\left\{\mathcal{D}_{k}\right\}_{k}$
$R F D$ algebras include: finite dimensional C^{*}-algebras, abelian C^{*} algebras. A result of Choi in 1980 showed that $C^{*}\left(F_{2}\right)$ is $R F D$.

Remark 2.2 If a C^{*}-algebra \mathcal{A} is $R F D$, then \mathcal{A} has a faithful trace.
Theorem 2.3 (Malcev) If G is a finite generated group, then

$$
C^{*}(G) \text { is } R F D \Rightarrow G \text { is } R F
$$

Theorem 2.4 (Bekka, 2006) $C^{*}\left(S L_{4}(\mathbb{Z})\right)$ is NOT RFD.
Remark 2.5 Connes embedding problem \Longleftrightarrow is $C *\left(F_{2} \times F_{2}\right)$ RFD

In the context of C^{*}-algebras, there are two types of free products we are interested: full free product and reduced free product.

Suppose that \mathcal{A}_{1} and \mathcal{A}_{2} are unital C*-algebras. The unital full free product, $\mathcal{D}\left(=\mathcal{A}_{1} *_{\mathbb{C}} \mathcal{A}_{2}\right)$, is a unital C^{*}-algebra together with unital $*$-homomorphism $\sigma_{i}: \mathcal{A}_{i} \rightarrow D$ such that the following is true:
if \mathcal{C} is a unital C^{*}-algebra and $\rho_{i}: \mathcal{A}_{i} \rightarrow \mathcal{C}$ are unital $*$-homomorphisms, then \exists a unique unital $*$-homomorphism $\pi: \mathcal{D} \rightarrow \mathcal{C}$ such that $\rho_{i}=\pi \circ \sigma_{i}$.

Reduced free products were introduced by Voiculescu in the context of free probability theory.

Theorem 2.6 (Exel, Loring, 1992) Suppose that \mathcal{A}_{1} and \mathcal{A}_{2} are residually finite dimensional unital C^{*}-algebras, then $\mathcal{A}_{1} *_{\mathbb{C} I} \mathcal{A}_{2}$ is RFD, where $\mathcal{A}_{1} *_{\mathbb{C} I} \mathcal{A}_{2}$ is the unital full free product of \mathcal{A}_{1} and \mathcal{A}_{2}.

How about amalgamated free products of RDF C*-algebras? Do we have an analogue of Baumslag's theorem in C*-algebra context?

3 An analogue of Baumslag's theorem

Suppose that unital C^{*}-algebras $\mathcal{A} \supseteq \mathcal{D} \subseteq \mathcal{B}$. Using universal property, we can define the unital full amalgamated free product of \mathcal{A} and \mathcal{B} over \mathcal{D}, which is denoted by $\mathcal{A} *_{\mathcal{D}} \mathcal{B}$.

Remark 3.1 If C^{*}-algebra \mathcal{A} is $R F D$, then \mathcal{A} has a faithful trace.

Example 3.2 Let $\mathcal{D}=\mathbb{C} \oplus \mathbb{C}, \mathcal{A}=\mathcal{M}_{2}(\mathbb{C})$ and $\mathcal{B}=\mathcal{M}_{3}(\mathbb{C})$. Let $\mathcal{D} \hookrightarrow \mathcal{A}$ by sending $(a, b) \rightarrow \operatorname{diag}(a, b)$ and $\mathcal{D} \hookrightarrow \mathcal{B}$ by sending $(a, b) \rightarrow$ $\operatorname{diag}(a, b, b)$. Then $\mathcal{A} *_{\mathcal{D}} \mathcal{B}$ is not RFD, because there is no trace on $\mathcal{A} *_{\mathcal{D}} \mathcal{B}$.

An earlier result by S. Armstrong, K. Dykema, R. Exel, and H. Li in 2002:

Theorem 3.3 (Armstrong-Dykema-Exel-Li)

Suppose unital C^{*}-algebras: $\mathcal{A} \supseteq \mathcal{D} \subseteq \mathcal{B}$ with \mathcal{A} and \mathcal{B} finite dimensional. Then
$\mathcal{A} *_{\mathcal{D}} \mathcal{B}$ is residually finite dimensional
$\Longleftrightarrow \exists$ faithful tracial states $\tau_{\mathcal{A}}$ on \mathcal{A} and $\tau_{\mathcal{B}}$ on \mathcal{B} whose restrictions to \mathcal{D} agree
$\Longleftrightarrow \exists$ a matrix algbra $\mathcal{M}_{k}(\mathbb{C})$ and embedding $\rho_{\mathcal{A}}: \mathcal{A} \rightarrow \mathcal{M}_{k}(\mathbb{C})$, $\rho_{\mathcal{B}}: \mathcal{B} \rightarrow \mathcal{M}_{k}(\mathbb{C})$, such that the following diagram commutes

$$
\begin{array}{lll}
\mathcal{D} & \subseteq & \mathcal{A} \\
\cup & & \downarrow \rho_{\mathcal{A}} \\
\mathcal{B} & \rightarrow & \mathcal{M}_{k}(\mathbb{C})
\end{array}
$$

An analogue of Baumslag's Theorem in C*-algebra context by J. Shen and Q. Li in 2010:

Theorem 3.4 Consider unital C^{*}-algebras: $\mathcal{A} \supseteq \mathcal{D} \subseteq \mathcal{B}$ where \mathcal{A} and \mathcal{B} are $R F D$ and \mathcal{D} is finite dimensional. Then
$\mathcal{A} *_{\mathcal{D}} \mathcal{B}$ is residually finite dimensional
$\Longleftrightarrow \exists$ a family of matrix algebras $\left\{\mathcal{M}_{n_{k}}(\mathbb{C})\right\}$ and embedding $\rho_{\mathcal{A}}: \mathcal{A} \rightarrow$ $\prod_{k} \mathcal{M}_{n_{k}}(\mathbb{C})$, $\rho_{\mathcal{B}}: \mathcal{B} \rightarrow \prod_{k} \mathcal{M}_{n_{k}}(\mathbb{C})$, such that the following diagram commutes

$$
\begin{array}{lll}
\mathcal{D} & \subseteq & \mathcal{A} \\
\cup & & \downarrow \rho_{\mathcal{A}} \\
\mathcal{B} & \overrightarrow{\rho_{\mathcal{B}}} & \prod_{k} \mathcal{M}_{n_{k}}(\mathbb{C})
\end{array}
$$

Corollary 3.5 Consider unital C^{*}-algebras: $\mathcal{D} \subseteq \mathcal{A}$ where \mathcal{A} is $R F D$ and \mathcal{D} is finite dimensional. Then $\mathcal{A} *_{\mathcal{D}} \mathcal{A}$ is residually finite dimensional.

There is another type of free product of C*-algebras: Reduced free product of C^{*}-algebras introduced by D. Voiculescu.

Consider unital C^{*}-algebras $\mathcal{A} \supseteq \mathcal{D} \subseteq \mathcal{B}, E_{\mathcal{A}}: \mathcal{A} \rightarrow \mathcal{D}$ and $E_{\mathcal{B}}$: $\mathcal{B} \rightarrow \mathcal{D}$ are condition expectations such that the corresponding GNS representations are faithful. Then, the reduced free product of \mathcal{A} and \mathcal{B} with the amalgamation over \mathcal{D}, denoted by $\left(\mathcal{A}, E_{\mathcal{A}}\right) *_{\mathcal{D}}\left(\mathcal{B}, E_{\mathcal{B}}\right)$ is introduced by Voiculescu.

In particular, when $\mathcal{D}=\mathbb{C}$ and conditional expectations are induced by faithful traces, we obtained the reduced free product $\left(\mathcal{A}, \tau_{\mathcal{A}}\right) *_{\text {red }}$ $\left(\mathcal{B}, \tau_{\mathcal{B}}\right)$ of \mathcal{A} and \mathcal{B}.

Most of reduced free products of unital C*-algebras are not RFD. For example,

$$
C_{r}^{*}\left(F_{2}\right) \simeq\left(C_{r}^{*}(\mathbb{Z}), \tau_{\mathbb{Z}}\right) *_{\text {red }}\left(C_{r}^{*}(\mathbb{Z}), \tau_{\mathbb{Z}}\right)
$$

is not quasidiagonal by a result of Rosenberg, thus not RFD.

4 MF algebras

A separable C^{*}-algebras \mathcal{A} is residually finite dimensional (RFD) $\Longleftrightarrow \mathcal{A}$ embeds into $\prod_{k} D_{k}$ for a family of finite dimensional C^{*}-algebra $\left\{\mathcal{D}_{k}\right\}_{k}$.

MF algebras are introduced by Blackadar and Kirchberg in 1997.

Definition 4.1

A separable C^{*}-algebras \mathcal{A} is MF algebras (or \mathcal{A} has MF property) $\Longleftrightarrow \mathcal{A}$ embeds into $\prod_{k} D_{k} / \sum_{k} D_{k}$ for a family of matrix algebras $\left\{\mathcal{D}_{k}\right\}_{k}$.

MF algebras include: RFD algebras, quasidiagonal C*-algebras.

Definition $4.2 A$ separable C^{*}-algebra $\mathcal{A} \subseteq B(\mathcal{H})$ is quasidiagonal if there is an increasing sequence of finite-rank projections $\left\{p_{i}\right\}_{i=1}^{\infty}$ on H tending strongly to the identity such that $\left\|x p_{i}-p_{i} x\right\| \rightarrow 0$ as $i \rightarrow \infty$ for any $x \in \mathcal{A}$. An abstract separable C^{*}-algebra \mathcal{A} is quasidiagonal if there is a faithful $*$-representation $\pi: \mathcal{A} \rightarrow B(\mathcal{H})$ on a Hilbert space \mathcal{H} such that $\pi(\mathcal{A}) \subseteq B(\mathcal{H})$ is quasidiagonal.

Proposition 4.3 (Blackadar, Kirchberg) Suppose \mathcal{A} is a nuclear C^{*}-algebra. Then

$$
\mathcal{A} \text { is } M F \Leftrightarrow \mathcal{A} \text { is quasidiagonal }
$$

Applications of MF algebras:
Proposition 4.4 (Voicuelscu) Suppose that \mathcal{A} is an MF algebra, but not a quasidiagonal C^{*}-algebra. Then the BDF-extension semigroup, $\operatorname{Ext}(\mathcal{A})$, is not a group.

Proposition 4.5 (Voiculescu) Suppose that \mathcal{A} is an MF algebra. Then, for x_{1}, \ldots, x_{n} in \mathcal{A}, we have

$$
\delta_{\text {top }}\left(x_{1}, \ldots, x_{n}\right)>-\infty,
$$

where $\delta_{\text {top }}\left(x_{1}, \ldots, x_{n}\right)$ is Voiculescu's topological free entropy dimension of x_{1}, \ldots, x_{n}.

4.1 Reduced Free Products

Theorem 4.6 (Haagerup, Thorbjorsen)

$C_{r}^{*}\left(F_{2}\right) \simeq\left(C_{r}^{*}(\mathbb{Z}), \tau_{\mathbb{Z}}\right) *_{r e d}\left(C_{r}^{*}(\mathbb{Z}), \tau_{\mathbb{Z}}\right)$ is an MF algebra. Thus Ext $\left(C_{r}^{*}\left(F_{2}\right)\right)$ is not a group.

In 2009, D. Hadwin, J. Li, L. Wang and I showed that
Theorem 4.7 Suppose that $\mathcal{A}_{i}, i=1, \ldots, n$, is a family of unital separable AH algebras with faithful tracial states $\tau_{i}, i=1, \ldots, n$. Then

$$
\left(\mathcal{A}_{1}, \tau_{1}\right) *_{\text {red }} \cdots *_{\text {red }}\left(\mathcal{A}_{n}, \tau_{n}\right)
$$

is an MF algebra.
Corollary 4.8 Suppose that G_{1}, G_{2} is direct products of abelian/finite groups. Then $C_{r}^{*}\left(G_{1} * G_{2}\right)$ is an MF algebra. Moreover, if $\left|G_{1}\right| \geq 3$ and $\left|G_{2}\right| \geq 2$, then $\operatorname{Ext}\left(C_{r}^{*}\left(G_{1} * G_{2}\right)\right)$ is not a group.

4.2 Reduced Amalgamated Free Products

An extension of preceding results to reduced amalgamated free products is obtained by Q. Li and I in 2010.

Theorem 4.9 Suppose that \mathcal{A}_{1} and \mathcal{A}_{2} are two unital UHF-algebras with faithful tracial states $\tau_{\mathcal{A}_{1}}$ and $\tau_{\mathcal{A}_{2}}$ respectively.

Let $\mathcal{A}_{1} \supseteq \mathcal{D} \subseteq \mathcal{A}_{2}$ be unital embedding of C^{*}-algebras where \mathcal{D} is a finite-dimensional C^{*}-algebra.

Assume that $E_{\mathcal{A}_{1}}: \mathcal{A}_{1} \rightarrow \mathcal{D}$ and $E_{\mathcal{A}_{2}}: \mathcal{A}_{2} \rightarrow \mathcal{D}$ are the trace preserving conditional expectations from \mathcal{A}_{1} and \mathcal{A}_{1} onto \mathcal{D} respectively.

Then the reduced amalgamated free product $\left(\mathcal{A}_{1}, E_{\mathcal{A}_{1}}\right) *_{\mathcal{D}}\left(\mathcal{A}_{2}, E_{\mathcal{A}_{2}}\right)$ is an MF algebra if and only if $\tau_{\mathcal{A}_{1}}(z)=\tau_{\mathcal{A}_{2}}(z)$ for all $z \in \mathcal{D}$.

Corollary 4.10 Suppose that $G_{1} \supseteq H \subseteq G_{2}$ are finite groups. Then

$$
C_{r}^{*}\left(G_{1} *_{H} G_{2}\right) \simeq C_{r}^{*}\left(G_{1}\right) *_{C_{r}^{*}(H)} C_{r}^{*}\left(G_{2}\right)
$$

is an MF algebra. Moreover, if $\left[G_{1}: H\right] \geq 2$ and $\left[G_{2}: H\right] \geq 3$, then $\operatorname{Ext}\left(C_{r}^{*}\left(G_{1} *_{H} G_{2}\right)\right)$ is not a group.

4.3 Full free products

In 2008, D. Hadwin, Q. Li and I showed that
Theorem 4.11 Suppose that A_{1} and \mathcal{A}_{2} are unital MF algebras. Then the unital full free product of \mathcal{A}_{1} and $\mathcal{A}_{2}, \mathcal{A}_{1} *_{\mathbb{C}} \mathcal{A}_{2}$ is $M F$.

Corollary 4.12 Suppose that A_{1} and \mathcal{A}_{2} are unital MF algebras. Suppose that x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{m} are families of generators of \mathcal{A}_{1}, and \mathcal{A}_{2} respectively. Then $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$ can be viewed as a family of generators of $\mathcal{A}_{1} *_{\mathbb{C}} \mathcal{A}_{2}$. We have

$$
\delta_{\text {top }}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)=\delta_{\text {top }}\left(x_{1}, \ldots, x_{n}\right)+\delta_{\text {top }}\left(y_{1}, \ldots, y_{m}\right),
$$

where $\delta_{\text {top }}$ is Voiculescu's topological free entropy dimension for C^{*} algebras.

4.4 Full Amalgamated free products

Example 4.13 Let $\mathcal{D}=\mathbb{C} \oplus \mathbb{C}, \mathcal{A}=\mathcal{M}_{2}(\mathbb{C})$ and $\mathcal{B}=\mathcal{M}_{3}(\mathbb{C})$. Let $\mathcal{D} \hookrightarrow \mathcal{A}$ by sending $(a, b) \rightarrow \operatorname{diag}(a, b)$ and $\mathcal{D} \hookrightarrow \mathcal{B}$ by sending $(a, b) \rightarrow$ $\operatorname{diag}(a, b, b)$. Then $\mathcal{A} *_{\mathcal{D}} \mathcal{B}$ is not $M F$, because there is no trace on $\mathcal{A} *_{\mathcal{D}} \mathcal{B}$.

In 2010, Q. Li and I showed that
Theorem 4.14 Consider unital C^{*}-algebras: $\mathcal{A} \supseteq \mathcal{D} \subseteq \mathcal{B}$ where \mathcal{A} and \mathcal{B} are $M F$ algebras and \mathcal{D} is finite dimensional (or AF algebra, more generally). Then
$\mathcal{A} *_{\mathcal{D}} \mathcal{B}$ is MF algebra
$\Longleftrightarrow \exists$ a family of matrix algebras $\left\{\mathcal{M}_{n_{k}}(\mathbb{C})\right\}$ and embedding

$$
\begin{aligned}
& \rho_{\mathcal{A}}: \mathcal{A} \rightarrow \prod_{k} \mathcal{M}_{n_{k}}(\mathbb{C}) / \sum_{k} \mathcal{M}_{n_{k}}(\mathbb{C}) \\
& \rho_{\mathcal{B}}: \mathcal{B} \rightarrow \prod_{k} \mathcal{M}_{n_{k}}(\mathbb{C}) / \sum_{k} \mathcal{M}_{n_{k}}(\mathbb{C})
\end{aligned}
$$

such that the following diagram commutes

$$
\begin{array}{lll}
\mathcal{D} & \subseteq & \mathcal{A} \\
\cup & & \downarrow \rho_{\mathcal{A}} \\
\mathcal{B} \underset{\rho_{\mathcal{B}}}{\rightarrow} & \prod_{k} \mathcal{M}_{n_{k}}(\mathbb{C}) / \sum_{k} \mathcal{M}_{n_{k}}(\mathbb{C})
\end{array}
$$

Corollary 4.15 Consider unital $A F$-algebras: $\mathcal{A} \supseteq \mathcal{D} \subseteq \mathcal{B}$. If there are faithful tracial states $\tau_{\mathcal{A}}$ and $\tau_{\mathcal{B}}$ on \mathcal{A} and \mathcal{B} respectively, such that $\tau_{\mathcal{A}}(x)=\tau_{\mathcal{B}}(x) \forall x \in \mathcal{D}$, then $\mathcal{A} *_{\mathcal{D}} \mathcal{B}$ is an MF algebra.

