Amalgamated free products of C*-algebras with MF property

Presented by

Junhao Shen

(joint work with Qihui Li)

University of New Hampshire

1 Residually Finite Groups

Definition 1.1

A countable group G is a residually finite (RF) group $\Leftrightarrow \forall e \neq g \in G, \exists a \text{ finite group } H \text{ and } a \text{ homomorphism } \rho : G \to H,$ $s.t. \ \rho(g) \neq e.$ $\Leftrightarrow G \text{ embeds into } \prod_k H_k \text{ for a family of finite groups } \{H_k\}_k$

RF groups include: finite group, finite generated abelian group, free groups F_n , and $SL_n(\mathbb{Z})$.

Remark 1.2 If G is a residually finite group, then

 $L(G) \hookrightarrow \mathcal{R}^{\omega}$

i.e. Connes' embedding problem for L(G) has a "yes" answer.

Remark 1.3 Connes embedding problem asks whether every separable II_1 factor can be embedded into \mathcal{R}^{ω} , where \mathcal{R}^{ω} is the untrapower of the hyperfinite II_1 factor \mathcal{R} .

Theorem 1.4 (Gruenberg, 1957) Suppose G_1, G_2 are RF. Then $G_1 * G_2$ is RF.

Theorem 1.5 (Baumslag, 1963) Suppose that $G_1 \supseteq H \subseteq G_2$, where G_1, G_2 are RF and H is finite. Then the generalized free product of G_1 and G_2 with amalgamation over H, $G_1 *_H G_2$ is RF.

An example of G. Higman in 1951 showed that $G_1 *_H G_2$ might not be RF when G_1, G_2 are RF and H is an infinite cyclic group. For example,

$$G_1 = \langle a, c : a^{-1}ca = c^2 \rangle; \quad G_2 = \langle b, c : b^{-1}cb = c^2 \rangle; \quad H = \langle c \rangle.$$

And

$$G_1 *_H G_2 = \langle a, b, c : a^{-1}ca = b^{-1}cb = c^2 \rangle$$

2 Residually Finite Dimensional C*-algebras

Definition 2.1

A separable C^{*}-algebras \mathcal{A} is residually finite dimensional (RFD) $\iff \forall \ 0 \neq x \in \mathcal{A}, \ \exists a \text{ finite dimensional } C^*\text{-algebra } \mathcal{D} \text{ and}$ $a \ ^*\text{-homomorphism } \rho : \mathcal{A} \to \mathcal{D}, \ s.t. \ \rho(x) \neq 0.$ $\iff \mathcal{A} \text{ embeds into } \prod_k D_k \text{ for finite dimensional } C^*\text{-algebras } \{\mathcal{D}_k\}_k$

RFD algebras include: finite dimensional C*-algebras, abelian C*algebras. A result of Choi in 1980 showed that $C^*(F_2)$ is *RFD*.

Remark 2.2 If a C^* -algebra \mathcal{A} is RFD, then \mathcal{A} has a faithful trace.

Theorem 2.3 (Malcev) If G is a finite generated group, then

$$C^*(G) \text{ is } RFD \implies G \text{ is } RF$$

Theorem 2.4 (Bekka, 2006) $C^*(SL_4(\mathbb{Z}))$ is NOT RFD.

Remark 2.5 Connes embedding problem \iff is $C * (F_2 \times F_2)$ RFD

In the context of C^{*}-algebras, there are two types of free products we are interested: **full free product** and **reduced free product**.

Suppose that \mathcal{A}_1 and \mathcal{A}_2 are unital C^{*}-algebras. The unital full free product, $\mathcal{D}(=\mathcal{A}_1 *_{\mathbb{C}} \mathcal{A}_2)$, is a unital C^{*}-algebra together with unital *-homomorphism $\sigma_i : \mathcal{A}_i \to D$ such that the following is true:

if \mathcal{C} is a unital C*-algebra and $\rho_i : \mathcal{A}_i \to \mathcal{C}$ are unital *-homomorphisms, then \exists a unique unital *-homomorphism $\pi : \mathcal{D} \to \mathcal{C}$ such that $\rho_i = \pi \circ \sigma_i$.

Reduced free products were introduced by Voiculescu in the context of free probability theory.

Theorem 2.6 (Exel, Loring, 1992) Suppose that \mathcal{A}_1 and \mathcal{A}_2 are residually finite dimensional unital C^{*}-algebras, then $\mathcal{A}_1 *_{\mathbb{C}I} \mathcal{A}_2$ is RFD, where $\mathcal{A}_1 *_{\mathbb{C}I} \mathcal{A}_2$ is the unital full free product of \mathcal{A}_1 and \mathcal{A}_2 .

How about amalgamated free products of RDF C*-algebras? Do we have an analogue of Baumslag's theorem in C*-algebra context?

3 An analogue of Baumslag's theorem

Suppose that unital C*-algebras $\mathcal{A} \supseteq \mathcal{D} \subseteq \mathcal{B}$. Using universal property, we can define the unital full amalgamated free product of \mathcal{A} and \mathcal{B} over \mathcal{D} , which is denoted by $\mathcal{A} *_{\mathcal{D}} \mathcal{B}$.

Remark 3.1 If C^* -algebra \mathcal{A} is RFD, then \mathcal{A} has a faithful trace.

Example 3.2 Let $\mathcal{D} = \mathbb{C} \oplus \mathbb{C}$, $\mathcal{A} = \mathcal{M}_2(\mathbb{C})$ and $\mathcal{B} = \mathcal{M}_3(\mathbb{C})$. Let $\mathcal{D} \hookrightarrow \mathcal{A}$ by sending $(a, b) \to diag(a, b)$ and $\mathcal{D} \hookrightarrow \mathcal{B}$ by sending $(a, b) \to diag(a, b, b)$. Then $\mathcal{A} *_{\mathcal{D}} \mathcal{B}$ is not RFD, because there is no trace on $\mathcal{A} *_{\mathcal{D}} \mathcal{B}$.

An earlier result by S. Armstrong, K. Dykema, R. Exel, and H. Li in 2002:

Theorem 3.3 (Armstrong-Dykema-Exel-Li)

Suppose unital C*-algebras: $\mathcal{A} \supseteq \mathcal{D} \subseteq \mathcal{B}$ with \mathcal{A} and \mathcal{B} finite dimensional. Then

 $\mathcal{A} *_{\mathcal{D}} \mathcal{B}$ is residually finite dimensional $\iff \exists$ faithful tracial states $\tau_{\mathcal{A}}$ on \mathcal{A} and $\tau_{\mathcal{B}}$ on \mathcal{B} whose restrictions to \mathcal{D} agree

 $\iff \exists a \text{ matrix algbra } \mathcal{M}_k(\mathbb{C}) \text{ and embedding } \rho_{\mathcal{A}} : \mathcal{A} \to \mathcal{M}_k(\mathbb{C}),$ $\rho_{\mathcal{B}} : \mathcal{B} \to \mathcal{M}_k(\mathbb{C}), \text{ such that the following diagram commutes}$

$$\mathcal{D} \subseteq \mathcal{A} \\ \cup \qquad \qquad \downarrow \rho_{\mathcal{A}} \\ \mathcal{B} \xrightarrow[\rho_{\mathcal{B}}]{\rightarrow} \qquad \mathcal{M}_k(\mathbb{C})$$

An analogue of Baumslag's Theorem in C*-algebra context by J. Shen and Q. Li in 2010:

Theorem 3.4 Consider unital C^{*}-algebras: $\mathcal{A} \supseteq \mathcal{D} \subseteq \mathcal{B}$ where \mathcal{A} and \mathcal{B} are RFD and \mathcal{D} is finite dimensional. Then

 $\mathcal{A} *_{\mathcal{D}} \mathcal{B}$ is residually finite dimensional $\iff \exists a \text{ family of matrix algebras } \{\mathcal{M}_{n_k}(\mathbb{C})\} \text{ and embedding } \rho_{\mathcal{A}} : \mathcal{A} \rightarrow \prod_k \mathcal{M}_{n_k}(\mathbb{C}), \ \rho_{\mathcal{B}} : \mathcal{B} \rightarrow \prod_k \mathcal{M}_{n_k}(\mathbb{C}), \text{ such that the following diagram commutes}}$

$$egin{array}{rcl} \mathcal{D} & \subseteq & \mathcal{A} \ \cup & & \downarrow
ho_{\mathcal{A}} \ \mathcal{B} & & \prod_{
ho_{\mathcal{B}}} & \prod_k \mathcal{M}_{n_k}(\mathbb{C}) \end{array}$$

Corollary 3.5 Consider unital C^* -algebras: $\mathcal{D} \subseteq \mathcal{A}$ where \mathcal{A} is RFD and \mathcal{D} is finite dimensional. Then $\mathcal{A} *_{\mathcal{D}} \mathcal{A}$ is residually finite dimensional.

There is another type of free product of C^{*}-algebras: *Reduced free* product of C^{*}-algebras introduced by D. Voiculescu.

Consider unital C*-algebras $\mathcal{A} \supseteq \mathcal{D} \subseteq \mathcal{B}, E_{\mathcal{A}} : \mathcal{A} \to \mathcal{D}$ and $E_{\mathcal{B}} : \mathcal{B} \to \mathcal{D}$ are condition expectations such that the corresponding GNS representations are faithful. Then, the reduced free product of \mathcal{A} and \mathcal{B} with the amalgamation over \mathcal{D} , denoted by $(\mathcal{A}, E_{\mathcal{A}}) *_{\mathcal{D}} (\mathcal{B}, E_{\mathcal{B}})$ is introduced by Voiculescu.

In particular, when $\mathcal{D} = \mathbb{C}$ and conditional expectations are induced by faithful traces, we obtained the reduced free product $(\mathcal{A}, \tau_{\mathcal{A}}) *_{red}$ $(\mathcal{B}, \tau_{\mathcal{B}})$ of \mathcal{A} and \mathcal{B} .

Most of reduced free products of unital C*-algebras are not RFD. For example,

$$C_r^*(F_2) \simeq (C_r^*(\mathbb{Z}), \tau_{\mathbb{Z}}) *_{red} (C_r^*(\mathbb{Z}), \tau_{\mathbb{Z}})$$

is not quasidiagonal by a result of Rosenberg, thus not RFD.

4 MF algebras

A separable C^{*}-algebras \mathcal{A} is residually finite dimensional (RFD) $\iff \mathcal{A}$ embeds into $\prod_k D_k$ for a family of finite dimensional C^{*}-algebra $\{\mathcal{D}_k\}_k$.

MF algebras are introduced by Blackadar and Kirchberg in 1997.

Definition 4.1

A separable C^{*}-algebras \mathcal{A} is MF algebras (or \mathcal{A} has MF property) $\iff \mathcal{A}$ embeds into $\prod_{k} D_{k} / \sum_{k} D_{k}$ for a family of matrix algebras $\{\mathcal{D}_{k}\}_{k}$.

MF algebras include: RFD algebras, quasidiagonal C*-algebras.

Definition 4.2 A separable C^* -algebra $\mathcal{A} \subseteq B(\mathcal{H})$ is quasidiagonal if there is an increasing sequence of finite-rank projections $\{p_i\}_{i=1}^{\infty}$ on \mathcal{H} tending strongly to the identity such that $||xp_i - p_ix|| \to 0$ as $i \to \infty$ for any $x \in \mathcal{A}$. An abstract separable C^* -algebra \mathcal{A} is quasidiagonal if there is a faithful *-representation $\pi : \mathcal{A} \to B(\mathcal{H})$ on a Hilbert space \mathcal{H} such that $\pi(\mathcal{A}) \subseteq B(\mathcal{H})$ is quasidiagonal.

Proposition 4.3 (Blackadar, Kirchberg) Suppose \mathcal{A} is a nuclear C^* -algebra. Then

 $\mathcal{A} \text{ is } MF \Leftrightarrow \mathcal{A} \text{ is quasidiagonal}$

Applications of MF algebras:

Proposition 4.4 (Voicuelscu) Suppose that \mathcal{A} is an MF algebra, but not a quasidiagonal C^{*}-algebra. Then the BDF-extension semigroup, $Ext(\mathcal{A})$, is not a group.

Proposition 4.5 (Voiculescu) Suppose that \mathcal{A} is an MF algebra. Then, for x_1, \ldots, x_n in \mathcal{A} , we have

$$\delta_{top}(x_1,\ldots,x_n) > -\infty,$$

where $\delta_{top}(x_1, \ldots, x_n)$ is Voiculescu's topological free entropy dimension of x_1, \ldots, x_n .

4.1 Reduced Free Products

Theorem 4.6 (Haagerup, Thorbjorsen)

 $C_r^*(F_2) \simeq (C_r^*(\mathbb{Z}), \tau_{\mathbb{Z}}) *_{red}(C_r^*(\mathbb{Z}), \tau_{\mathbb{Z}})$ is an MF algebra. Thus $Ext(C_r^*(F_2))$ is not a group.

In 2009, D. Hadwin, J. Li, L. Wang and I showed that

Theorem 4.7 Suppose that A_i , i = 1, ..., n, is a family of unital separable AH algebras with faithful tracial states τ_i , i = 1, ..., n. Then

$$(\mathcal{A}_1, \tau_1) *_{red} \cdots *_{red} (\mathcal{A}_n, \tau_n)$$

is an MF algebra.

Corollary 4.8 Suppose that G_1, G_2 is direct products of abelian/finite groups. Then $C_r^*(G_1 * G_2)$ is an MF algebra. Moreover, if $|G_1| \ge 3$ and $|G_2| \ge 2$, then $Ext(C_r^*(G_1 * G_2))$ is not a group.

4.2 Reduced Amalgamated Free Products

An extension of preceding results to reduced amalgamated free products is obtained by Q. Li and I in 2010.

Theorem 4.9 Suppose that A_1 and A_2 are two unital UHF-algebras with faithful tracial states τ_{A_1} and τ_{A_2} respectively.

Let $\mathcal{A}_1 \supseteq \mathcal{D} \subseteq \mathcal{A}_2$ be unital embedding of C^* -algebras where \mathcal{D} is a finite-dimensional C^* -algebra.

Assume that $E_{\mathcal{A}_1} : \mathcal{A}_1 \to \mathcal{D}$ and $E_{\mathcal{A}_2} : \mathcal{A}_2 \to \mathcal{D}$ are the trace preserving conditional expectations from \mathcal{A}_1 and \mathcal{A}_1 onto \mathcal{D} respectively.

Then the reduced amalgamated free product $(\mathcal{A}_1, E_{\mathcal{A}_1}) *_{\mathcal{D}} (\mathcal{A}_2, E_{\mathcal{A}_2})$ is an MF algebra if and only if $\tau_{\mathcal{A}_1}(z) = \tau_{\mathcal{A}_2}(z)$ for all $z \in \mathcal{D}$.

Corollary 4.10 Suppose that $G_1 \supseteq H \subseteq G_2$ are finite groups. Then

 $C_r^*(G_1 *_H G_2) \simeq C_r^*(G_1) *_{C_r^*(H)} C_r^*(G_2)$

is an MF algebra. Moreover, if $[G_1 : H] \ge 2$ and $[G_2 : H] \ge 3$, then $Ext(C_r^*(G_1 *_H G_2))$ is not a group.

4.3 Full free products

In 2008, D. Hadwin, Q. Li and I showed that

Theorem 4.11 Suppose that A_1 and A_2 are unital MF algebras. Then the unital full free product of A_1 and A_2 , $A_1 *_{\mathbb{C}} A_2$ is MF.

Corollary 4.12 Suppose that A_1 and A_2 are unital MF algebras. Suppose that x_1, \ldots, x_n and y_1, \ldots, y_m are families of generators of A_1 , and A_2 respectively. Then $x_1, \ldots, x_n, y_1, \ldots, y_m$ can be viewed as a family of generators of $A_1 *_{\mathbb{C}} A_2$. We have

$$\delta_{top}(x_1,\ldots,x_n,y_1,\ldots,y_m) = \delta_{top}(x_1,\ldots,x_n) + \delta_{top}(y_1,\ldots,y_m),$$

where δ_{top} is Voiculescu's topological free entropy dimension for C^* -algebras.

4.4 Full Amalgamated free products

Example 4.13 Let $\mathcal{D} = \mathbb{C} \oplus \mathbb{C}$, $\mathcal{A} = \mathcal{M}_2(\mathbb{C})$ and $\mathcal{B} = \mathcal{M}_3(\mathbb{C})$. Let $\mathcal{D} \hookrightarrow \mathcal{A}$ by sending $(a, b) \to diag(a, b)$ and $\mathcal{D} \hookrightarrow \mathcal{B}$ by sending $(a, b) \to diag(a, b, b)$. Then $\mathcal{A}_{*\mathcal{D}}\mathcal{B}$ is not MF, because there is no trace on $\mathcal{A}_{*\mathcal{D}}\mathcal{B}$.

In 2010, Q. Li and I showed that

Theorem 4.14 Consider unital C^{*}-algebras: $\mathcal{A} \supseteq \mathcal{D} \subseteq \mathcal{B}$ where \mathcal{A} and \mathcal{B} are MF algebras and \mathcal{D} is finite dimensional (or AF algebra, more generally). Then

 $\mathcal{A} *_{\mathcal{D}} \mathcal{B}$ is MF algebra

 $\iff \exists a \text{ family of matrix algebras } \{\mathcal{M}_{n_k}(\mathbb{C})\} \text{ and embedding}$

$$\rho_{\mathcal{A}}: \mathcal{A} \to \prod_{k} \mathcal{M}_{n_{k}}(\mathbb{C}) / \sum_{k} \mathcal{M}_{n_{k}}(\mathbb{C})$$
$$\rho_{\mathcal{B}}: \mathcal{B} \to \prod_{k} \mathcal{M}_{n_{k}}(\mathbb{C}) / \sum_{k} \mathcal{M}_{n_{k}}(\mathbb{C})$$

such that the following diagram commutes

$$egin{array}{lll} \mathcal{D} & \subseteq & \mathcal{A} \ \cup & & \downarrow
ho_{\mathcal{A}} \ \mathcal{B} & \stackrel{
ightarrow}{
ightarrow} & \prod_k \mathcal{M}_{n_k}(\mathbb{C}) / \sum_k \mathcal{M}_{n_k}(\mathbb{C}) \end{array}$$

Corollary 4.15 Consider unital AF-algebras: $\mathcal{A} \supseteq \mathcal{D} \subseteq \mathcal{B}$. If there are faithful tracial states $\tau_{\mathcal{A}}$ and $\tau_{\mathcal{B}}$ on \mathcal{A} and \mathcal{B} respectively, such that $\tau_{\mathcal{A}}(x) = \tau_{\mathcal{B}}(x) \ \forall x \in \mathcal{D}$, then $\mathcal{A} *_{\mathcal{D}} \mathcal{B}$ is an MF algebra.