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1 Residually Finite Groups

Definition 1.1

A countable group G is a residually finite (RF) group

⇔ ∀ e 6= g ∈ G, ∃a finite group H and a homomorphism ρ : G→ H,

s.t. ρ(g) 6= e.

⇔ G embeds into
∏
k

Hk for a family of finite groups {Hk}k

RF groups include: finite group, finite generated abelian group, free
groups Fn, and SLn(Z).

Remark 1.2 If G is a residually finite group, then

L(G) ↪→ Rω

i.e. Connes’ embedding problem for L(G) has a “yes” answer.

Remark 1.3 Connes embedding problem asks whether every separable
II1 factor can be embedded into Rω, where Rω is the untrapower of the
hyperfinite II1 factor R.
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Theorem 1.4 (Gruenberg, 1957) Suppose G1, G2 are RF. Then
G1 ∗G2 is RF.

Theorem 1.5 (Baumslag, 1963) Suppose that G1 ⊇ H ⊆ G2, where
G1, G2 are RF and H is finite. Then the generalized free product of G1

and G2 with amalgamation over H, G1 ∗H G2 is RF.

An example of G. Higman in 1951 showed that G1∗HG2 might not be
RF when G1, G2 are RF and H is an infinite cyclic group. For example,

G1 = 〈a, c : a−1ca = c2〉; G2 = 〈b, c : b−1cb = c2〉; H = 〈c〉.

And
G1 ∗H G2 = 〈a, b, c : a−1ca = b−1cb = c2〉

3



2 Residually Finite Dimensional C∗-algebras

Definition 2.1

A separable C∗-algebras A is residually finite dimensional (RFD)

⇐⇒ ∀ 0 6= x ∈ A, ∃a finite dimensional C∗-algebra D and

a *-homomorphism ρ : A → D, s.t. ρ(x) 6= 0.

⇐⇒ A embeds into
∏
k

Dk for finite dimensional C∗-algebras {Dk}k

RFD algebras include: finite dimensional C∗-algebras, abelian C∗-
algebras. A result of Choi in 1980 showed that C∗(F2) is RFD.

Remark 2.2 If a C∗-algebra A is RFD, then A has a faithful trace.

Theorem 2.3 (Malcev) If G is a finite generated group, then

C∗(G) is RFD ⇒ G is RF

Theorem 2.4 (Bekka, 2006) C∗(SL4(Z)) is NOT RFD.

Remark 2.5 Connes embedding problem ⇐⇒ is C ∗ (F2 × F2) RFD
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In the context of C∗-algebras, there are two types of free products
we are interested: full free product and reduced free product.

Suppose that A1 and A2 are unital C∗-algebras. The unital full free
product, D(= A1 ∗C A2), is a unital C∗-algebra together with unital
∗-homomorphism σi : Ai → D such that the following is true:

if C is a unital C∗-algebra and ρi : Ai → C are unital ∗-homomorphisms,
then ∃ a unique unital ∗-homomorphism π : D → C such that
ρi = π ◦ σi.

Reduced free products were introduced by Voiculescu in the context
of free probability theory.

Theorem 2.6 (Exel, Loring, 1992) Suppose that A1 and A2 are resid-
ually finite dimensional unital C∗-algebras, then A1 ∗CI A2 is RFD,
where A1 ∗CI A2 is the unital full free product of A1 and A2 .

How about amalgamated free products of RDF C∗-algebras? Do we
have an analogue of Baumslag’s theorem in C∗-algebra context?
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3 An analogue of Baumslag’s theorem

Suppose that unital C∗-algebras A ⊇ D ⊆ B. Using universal property,
we can define the unital full amalgamated free product of A and B over
D, which is denoted by A ∗D B.

Remark 3.1 If C∗-algebra A is RFD, then A has a faithful trace.

Example 3.2 Let D = C ⊕ C, A = M2(C) and B = M3(C). Let
D ↪→ A by sending (a, b)→ diag(a, b) and D ↪→ B by sending (a, b)→
diag(a, b, b). Then A ∗D B is not RFD, because there is no trace on
A ∗D B.

An earlier result by S. Armstrong, K. Dykema, R. Exel, and H. Li
in 2002:

Theorem 3.3 (Armstrong-Dykema-Exel-Li)
Suppose unital C∗-algebras: A ⊇ D ⊆ B with A and B finite dimen-
sional. Then

A ∗D B is residually finite dimensional
⇐⇒ ∃ faithful tracial states τA on A and τB on B whose restrictions to
D agree
⇐⇒ ∃ a matrix algbra Mk(C) and embedding ρA : A → Mk(C),
ρB : B →Mk(C), such that the following diagram commutes

D ⊆ A
∪ ↓ ρA
B →

ρB
Mk(C)
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An analogue of Baumslag’s Theorem in C∗-algebra context by J.
Shen and Q. Li in 2010:

Theorem 3.4 Consider unital C∗-algebras: A ⊇ D ⊆ B where A and
B are RFD and D is finite dimensional. Then

A ∗D B is residually finite dimensional
⇐⇒ ∃ a family of matrix algebras {Mnk(C)} and embedding ρA : A →∏

kMnk(C), ρB : B →
∏

kMnk(C), such that the following diagram
commutes

D ⊆ A
∪ ↓ ρA
B →

ρB

∏
k

Mnk(C)

Corollary 3.5 Consider unital C∗-algebras: D ⊆ A where A is RFD
and D is finite dimensional. Then A ∗D A is residually finite dimen-
sional.
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There is another type of free product of C∗-algebras: Reduced free
product of C∗-algebras introduced by D. Voiculescu.

Consider unital C∗-algebras A ⊇ D ⊆ B, EA : A → D and EB :
B → D are condition expectations such that the corresponding GNS
representations are faithful. Then, the reduced free product of A and
B with the amalgamation over D, denoted by (A, EA) ∗D (B, EB) is
introduced by Voiculescu.

In particular, when D = C and conditional expectations are induced
by faithful traces, we obtained the reduced free product (A, τA) ∗red
(B, τB) of A and B.

Most of reduced free products of unital C∗-algebras are not RFD.
For example,

C∗r (F2) ' (C∗r (Z), τZ) ∗red (C∗r (Z), τZ)

is not quasidiagonal by a result of Rosenberg, thus not RFD.
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4 MF algebras

A separable C∗-algebras A is residually finite dimensional (RFD)
⇐⇒ A embeds into

∏
kDk for a family of finite dimensional C∗-algebra

{Dk}k.

MF algebras are introduced by Blackadar and Kirchberg in 1997.

Definition 4.1

A separable C∗-algebras A is MF algebras (or A has MF property)

⇐⇒ A embeds into
∏
k

Dk/
∑
k

Dk for a family of matrix algebras {Dk}k.

MF algebras include: RFD algebras, quasidiagonal C∗-algebras.

Definition 4.2 A separable C∗-algebra A ⊆ B(H) is quasidiagonal if
there is an increasing sequence of finite-rank projections {pi}∞i=1 on H

tending strongly to the identity such that ‖xpi − pix‖ → 0 as i → ∞
for any x ∈ A. An abstract separable C∗-algebra A is quasidiagonal if
there is a faithful ∗-representation π : A → B(H) on a Hilbert space H
such that π(A) ⊆ B(H) is quasidiagonal.

Proposition 4.3 (Blackadar, Kirchberg) Suppose A is a nuclear
C∗-algebra. Then

A is MF ⇔ A is quasidiagonal
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Applications of MF algebras:

Proposition 4.4 (Voicuelscu) Suppose that A is an MF algebra, but
not a quasidiagonal C∗-algebra. Then the BDF-extension semigroup,
Ext(A), is not a group.

Proposition 4.5 (Voiculescu) Suppose that A is an MF algebra. Then,
for x1, . . . , xn in A, we have

δtop(x1, . . . , xn) > −∞,

where δtop(x1, . . . , xn) is Voiculescu’s topological free entropy dimension
of x1, . . . , xn.
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4.1 Reduced Free Products

Theorem 4.6 (Haagerup, Thorbjorsen)
C∗r (F2) ' (C∗r (Z), τZ)∗red(C∗r (Z), τZ) is an MF algebra. Thus Ext(C∗r (F2))
is not a group.

In 2009, D. Hadwin, J. Li, L. Wang and I showed that

Theorem 4.7 Suppose that Ai, i = 1, . . . , n, is a family of unital sep-
arable AH algebras with faithful tracial states τi, i = 1, . . . , n. Then

(A1, τ1) ∗red · · · ∗red (An, τn)

is an MF algebra.

Corollary 4.8 Suppose that G1, G2 is direct products of abelian/finite
groups. Then C∗r (G1 ∗G2) is an MF algebra. Moreover, if |G1| ≥ 3 and
|G2| ≥ 2, then Ext(C∗r (G1 ∗G2)) is not a group.

11



4.2 Reduced Amalgamated Free Products

An extension of preceding results to reduced amalgamated free products
is obtained by Q. Li and I in 2010.

Theorem 4.9 Suppose that A1 and A2 are two unital UHF-algebras
with faithful tracial states τA1

and τA2
respectively.

Let A1 ⊇ D ⊆ A2 be unital embedding of C∗-algebras where D is a
finite-dimensional C∗-algebra.

Assume that EA1
: A1 → D and EA2

: A2 → D are the trace preserv-
ing conditional expectations from A1 and A1 onto D respectively.

Then the reduced amalgamated free product (A1, EA1
) ∗D (A2, EA2

) is
an MF algebra if and only if τA1

(z) = τA2
(z) for all z ∈ D.

Corollary 4.10 Suppose that G1 ⊇ H ⊆ G2 are finite groups. Then

C∗r (G1 ∗H G2) ' C∗r (G1) ∗C∗r (H) C
∗
r (G2)

is an MF algebra. Moreover, if [G1 : H] ≥ 2 and [G2 : H] ≥ 3, then
Ext(C∗r (G1 ∗H G2)) is not a group.
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4.3 Full free products

In 2008, D. Hadwin, Q. Li and I showed that

Theorem 4.11 Suppose that A1 and A2 are unital MF algebras. Then
the unital full free product of A1 and A2, A1 ∗C A2 is MF.

Corollary 4.12 Suppose that A1 and A2 are unital MF algebras. Sup-
pose that x1, . . . , xn and y1, . . . , ym are families of generators of A1, and
A2 respectively. Then x1, . . . , xn, y1, . . . , ym can be viewed as a family
of generators of A1 ∗C A2. We have

δtop(x1, . . . , xn, y1, . . . , ym) = δtop(x1, . . . , xn) + δtop(y1, . . . , ym),

where δtop is Voiculescu’s topological free entropy dimension for C∗-
algebras.
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4.4 Full Amalgamated free products

Example 4.13 Let D = C ⊕ C, A = M2(C) and B = M3(C). Let
D ↪→ A by sending (a, b)→ diag(a, b) and D ↪→ B by sending (a, b)→
diag(a, b, b). Then A∗DB is not MF, because there is no trace on A∗DB.

In 2010, Q. Li and I showed that

Theorem 4.14 Consider unital C∗-algebras: A ⊇ D ⊆ B where A and
B are MF algebras and D is finite dimensional (or AF algebra, more
generally). Then

A ∗D B is MF algebra
⇐⇒ ∃ a family of matrix algebras {Mnk(C)} and embedding

ρA : A →
∏
k

Mnk(C)/
∑
k

Mnk(C)

ρB : B →
∏
k

Mnk(C)/
∑
k

Mnk(C)

such that the following diagram commutes

D ⊆ A
∪ ↓ ρA
B →

ρB

∏
k

Mnk(C)/
∑
k

Mnk(C)

Corollary 4.15 Consider unital AF-algebras: A ⊇ D ⊆ B. If there
are faithful tracial states τA and τB on A and B respectively, such that
τA(x) = τB(x) ∀x ∈ D, then A ∗D B is an MF algebra.
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