The Higson-Mackey Analogy for Complex Semisimple Groups and their Finite Extensions

> John R. Skukalek American University

> > ECOAS 2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Almost Connected Groups and the Baum-Connes Conjecture

- ► G: locally compact, second-countable group
- G_e : connected component of the identity $e \in G$.
- Suppose that G is almost connected, i.e. G/G_e is compact.
- ► *K*: maximal compact subgroup of *G*.
- G/K is a universal example for proper actions of G.
- Theorem (Chabert-Echterhoff-Nest, 03)
 The Baum-Connes assembly map

$$\mu: \mathsf{K}^{\mathsf{G}}_*(\mathsf{G}/\mathsf{K}) \to \mathsf{K}_*(\mathsf{C}^*_\lambda(\mathsf{G}))$$

is an isomorphism.

Connected Lie Groups and the Baum-Connes Conjecture

- ► *G*: connected Lie group.
- μ can be defined using "Dirac induction" from K (Kasparov).
- In this setting, Baum-Connes conjecture (without coefficients) known as Connes-Kasparov conjecture.
- Progress in the early-mid 80's:
 - Simply connected solvable groups (Connes).
 - Nilpotent groups (Rosenberg).
 - Amenable groups (Kasparov).
 - Complex semisimple groups (Pennington and Plymen).
 - Linear reductive groups (Wassermann).
- Latter two cases make use of detailed representation theory.

Continuous Fields and the Baum-Connes Conjecture

- G: almost connected Lie group $(G/G_e \text{ finite})$
- $G/K \cong \mathfrak{g}/\mathfrak{k}$, the quotient of the Lie algebras of G and K.
- ▶ Domain of assembly map identifies with K_{*}(K ⊨ g/ℓ) (Green-Julg, Kasparov).
- Smooth one-paramter family of Lie groups (Lie groupoid)

$$G_t = egin{cases} K \ltimes \mathfrak{g}/\mathfrak{k} & ext{if } t = 0 \ G & ext{if } t
eq 0. \end{cases}$$

► Continuous field of C*-algebras {C^{*}_λ(G_t)}_{t∈[0,1]} produces an "asymptotic" assembly map

$$\mu_0: \mathcal{K}_*(\mathcal{C}^*(\mathcal{G}_0)) \to \mathcal{K}_*(\mathcal{C}^*_\lambda(\mathcal{G})).$$

Noted in Baum-Connes-Higson paper and proved in Connes' book (94):

 μ is an isomorphism $\iff \mu_0$ is an isomorphism.

The Mackey Analogy

- ► *G*: connected semisimple Lie group (finite center).
- $G_0 = K \ltimes \mathfrak{g}/\mathfrak{k}$ known as a Cartan motion group.

▶ E.g.
$$G = SL(n, \mathbb{F}), \mathbb{F} \in {\mathbb{R}, \mathbb{C}}$$

•
$$G_0 = K \ltimes \mathfrak{p}$$
, where

$$\mathfrak{p} = \{A \in M_n(\mathbb{F}) | A^* = A, tr(A) = 0\}$$

and K is SO(n) or SU(n) acting by matrix conjugation.

Proposal (Mackey, 75)

There ought to be a "natural" correspondence between almost all irreducible tempered representations of G and almost all irreducible unitary representations of G_0 :

$$\widehat{G}_{\lambda} \longleftrightarrow \widehat{G_{0}}$$
 a.e. Plancherel.

The Mackey Analogy

- ► According to the "Mackey machine," the unitary dual of any semidirect product K × A with K compact and A locally compact abelian is parametrized by:
 - characters $\chi : A \to \mathbb{T}$ of A.
 - irreducible representations of the isotropy subgroups $K_{\chi} \subseteq K$.
- G: connected complex semisimple Lie group (e.g. $SL(n, \mathbb{C})$).
- ▶ The tempered (reduced unitary) dual of *G* is parametrized by:
 - characters of the Borel subgroup B (e.g. upper Δ matrices).
- ► Higson observed that for G₀ = K k p, each K_{\chi} is connected. Consequently, there is a canonical bijection

$$\Phi:\widehat{G}_{\lambda}\overset{\cong}{\longrightarrow}\widehat{G_{0}}.$$

Φ is not a homeomorphism.

Higson's Analysis

- Each π ∈ G_λ ∪ G₀ contains a unique τ ∈ K satisfying a minimality condition a la Vogan.
- Φ preserves these minimal *K*-types.
- Each τ gives rise to a subquotient of $C^*_{\lambda}(G)$ and of $C^*(G_0)$.
- ► Theorem (Higson, 06)

The above subquotients are Morita equivalent; in fact, to the same commutative C^* -algebra.

- Thus G
 _λ and G
 ₀ can be partitioned into homeomorphic (locally closed) subsets.
- An elaboration of this analysis to the continuous field {C^{*}_λ(G_t)}_{t∈[0,1]} establishes, using nothing more K-theoretic than Bott periodicity, that

$$\mu_0: K_*(C^*(G_0)) \to K_*(C^*_\lambda(G))$$

くしゃ (雪) (雪) (雪) (雪) (雪) (雪) (

is an isomorphism.

The Almost Connected Case

Consider an extension of groups

$$1 \rightarrow G \rightarrow \mathcal{G} \rightarrow F \rightarrow 1$$

in which G is connected complex semisimple and F is finite.

- So G has |F| connected components and identity component G, but needn't be a complex Lie group.
- There are maximal compact subgroups satisfying

$$1 \to K \to \mathcal{K} \to F \to 1.$$

▶ Thus with $G_0 = K \ltimes \mathfrak{g}/\mathfrak{k}$ and $\mathcal{G}_0 = \mathcal{K} \ltimes \mathfrak{g}/\mathfrak{k}$ we have

$$1 \rightarrow G_0 \rightarrow \mathcal{G}_0 \rightarrow F \rightarrow 1.$$

• *F* acts on \widehat{G}_{λ} , \widehat{G}_{0} and \widehat{K} .

The Almost Connected Case

We have a commutative diagram

in which τ and τ_0 are maps assigning minimal K-types.

Proposition

The above diagram is F-equivariant.

A general version of the Mackey machine yields a bijection

$$\widetilde{\Phi}: \widehat{\mathcal{G}}_{\lambda} \overset{\cong}{\longrightarrow} \widehat{\mathcal{G}}_{0}$$

such that $\pi \in \widehat{G}_{\lambda}$ occurs in $\widetilde{\pi}|_{\mathcal{G}} \iff \Phi(\pi)$ occurs in $\widetilde{\Phi}(\widetilde{\pi})|_{\mathcal{G}_0}$.

Twisted Crossed Products

- G: locally compact group, C: C^* -algebra.
- $\alpha: G \rightarrow Aut(C)$ continuous action
- (Green, 78) A twisting map for α is a (strongly) continuous homomorphism σ : N → UM(C), where N is a closed normal subgroup of G, satisfying:
 - 1. $\alpha_n(c) = \sigma(n)c\sigma(n)^* \quad \forall n \in N, c \in C.$
 - 2. $\sigma(gng^{-1}) = \alpha_g[\sigma(n)] \quad \forall g \in G, n \in N.$
- Call (α, σ) a *twisted* action of G/N:
 - Ordinary action of G/N lifts to a twisted action of G/N whose twisting map is trivial.
- A covariant representation (U, π) of (G, C) preserves σ if

$$\pi(\sigma(n)) = U_n \quad \forall \ n \in N.$$

Twisted Crossed Products

▶ The *twisted* crossed product C*-algebra

 $(G, N) \ltimes_{\alpha, \sigma} C.$

is the quotient of the ordinary crossed product $G \ltimes_{\alpha} C$ by the ideal corresponding to σ -preserving representations.

• Completion of functions $G \rightarrow A$ such that

$$f(ng) = f(g)\sigma(n)^* \quad \forall \ g \in G, n \in N,$$

with operations defined using G/N in place of G.

▶ If twisting map is trivial, then $(G, N) \ltimes C \cong G/N \ltimes C$.

• If $G'/N' \xrightarrow{\cong} G/N$, then restriction yields

$$(G, N) \ltimes C \xrightarrow{\cong} (G', N') \ltimes C.$$

▶ In particular, $(G, N) \ltimes C \cong G/N \ltimes C$ when $G \cong G/N \ltimes N$.

Twisted Crossed Products: Fundamental Example

- ► Assume for simplicity that *G* and *N* are unimodular.
- Twisted action of G/N on $C^*(N)$ given by

 $[\alpha_g(f)](n) = f(g^{-1}ng)$ $[\sigma(n')f](n) = f(n'^{-1}n)$

for all $g \in G$, $f \in C_c(N)$, and $n, n' \in N$.

• Associating to each $f \in C_c(G)$ $\tilde{f} : G \to C_c(N)$ defined by

$$[\widetilde{f}(g)](n) = f(ng) \quad \forall \ g \in G, n \in N.$$

yields an isomorphism

$$C^*(G) \xrightarrow{\cong} (G, N) \ltimes C^*(N).$$

Back to the Almost Connected Case

- G: finite extension of connected complex semisimple group G.
- $K \subseteq \mathcal{K}$ maximal compact subgroups.
- ► $C^*_{\lambda}(\mathcal{G}) \cong (\mathcal{K}, \mathcal{K}) \ltimes C^*_{\lambda}(\mathcal{G}), \ C^*(\mathcal{G}_0) \cong (\mathcal{K}, \mathcal{K}) \ltimes C^*(\mathcal{G}_0).$
- C₀(X_τ), τ ∈ K̂: Higson's commutative C*-algebras from the connected case.
- ▶ To each \mathcal{K}/K -orbit $\mathcal{O} \subseteq \widehat{\mathcal{K}}$ is associated a subquotient of $C^*_{\lambda}(\mathcal{G})$ and of $C^*(\mathcal{G}_0)$.

► Theorem

The above subquotients are Morita equivalent to a twisted crossed product

$$(\mathcal{K},\mathcal{K})\ltimes\bigoplus_{\tau\in\mathcal{O}}C_0(X_{\tau},\mathit{End}(V_{\tau})).$$

- ► Corollary
 - $\mu_0: K_*(C^*(\mathcal{G}_0)) \to K_*(C^*_\lambda(\mathcal{G})) \text{ is an isomorphism.}$

Other Classes of Lie groups?

► Theorem (George, 09)

There exists a bijection

$$\widehat{G}_{\lambda} \cong \widehat{G_0}$$

for $G = SL(n, \mathbb{R})$ that preserves minimal K-types.

- ▶ For more on real reductive groups, ask Nigel.
- Question: Can one prove Baum-Connes for simply connected nilpotent groups using Kirilov's orbit method?
- If G is (finite extension of) connected complex semisimple, SL(n, ℝ), or simply connected nilpotent, we have a bijection

$$\widehat{G}_{\lambda} \cong \widehat{G}_0/N_G(K).$$

▶ In the semisimple case, $N_G(K) = K$ acts trivially on $\widehat{G_0}$.

▶ In the nilpotent case, $K = \{e\}$ so $N_G(K) = G$ and $\widehat{G_0} \cong \mathfrak{g}^*$.

Appendix A: Higson's Bijection

- $\widehat{G}_{\lambda} \cong \widehat{H}/W$ where $H \subseteq B$ is a Cartan subgroup of G.
- ► H = MA where A = exp(a), a is a maximal abelian subspace of p, M = Z_K(A) is a maximal torus in K, and W = N_K(A)/M is the Weyl group of G.
- ▶ $\mathfrak{p} = \mathfrak{a} \oplus \mathfrak{a}^{\perp}$: *M*-invariant decomposition.
- ► $\forall \varphi \in \widehat{A} \cong \mathfrak{a}^*$, $\exists w \in W$ such that $w \cdot \varphi$ is trivial on \mathfrak{a}^{\perp} .
- K_{w·φ} ⊆ K is connected with maximal torus M and Weyl group W_φ ⊆ W.

The map

$$\mathsf{Ind}_B^G \ \sigma \otimes \varphi \mapsto \mathsf{Ind}_{K_{w \cdot \varphi} \ltimes \mathfrak{p}}^{G_0} \ \tau_\sigma \otimes (w \cdot \varphi)$$

where $\tau_{\sigma} \in \widehat{\mathcal{K}_{w \cdot \varphi}}$ has highest weight σ establishes a bijection

$$\widehat{G}_{\lambda} \xrightarrow{\cong} \widehat{G}_{0}$$

(日) (同) (三) (三) (三) (○) (○)

Appendix B: The Twisted Action

- ▶ For each $[\tau] \in \widehat{K}$, choose a representative $\tau : K \to U(V_{\tau})$.
- Suppose $y \in \mathcal{K}$ is such that $y \cdot [\tau] = [\tau']$.
- There exists a unitary operator U_y : V_τ → V_{τ'} unique up to a factor in T satisfying

$$U_y \tau(k) U_y^* = \tau'(yky^{-1}) \quad \forall \ k \in K.$$

• Given $T \in \text{End}(V_{\tau})$, let

$$y \cdot T = U_y T U_y^* \in \operatorname{End}(V_{\tau'}).$$

• Given $f: X_{\tau} \to \operatorname{End}(V_{\tau})$, define

$$lpha_y(f): X_{ au'} o \mathsf{End}(V_{ au'})$$

 $[lpha_y(f)](\pi) = y \cdot f(y^{-1} \cdot \pi) \quad orall \ \pi \in X_{ au'}.$

4日 + 4日 + 4日 + 4日 + 10 - 900

Appendix B: The Twisted Action

• Thus $\mathcal K$ acts via lpha on the $\mathcal C^*$ -algebra direct sum

$$\bigoplus_{\tau\in\mathcal{O}}C_0(X_{\tau},\operatorname{End}(V_{\tau})).$$

K acts on each summand by

$$[\alpha_k(f)](\pi) = \tau(k)f(\pi)\tau(k)^*.$$

Hence σ(k)f = τ(k) ∘ f defines a twisting map, so that we obtain a twisted action (α, σ) of K/K.