Invariants from noncommutative index theory for homotopy equivalences

Charlotte Wahl

ECOAS 2010

Charlotte Wahl (Hannover)

Invariants for homotopy equivalences

ECOAS 2010 1 / 12

Basics in noncommutative index theory: A noncommutative Chern character

Given

- \mathcal{A} C*-algebra p. e. $\mathcal{A} = C(B)$, B closed manifold
- A_∞ ⊂ A "smooth" subalgebra (=closed under holomorphic functional calculus, dense, etc.)
 A_∞ = C[∞](B)

Basics in noncommutative index theory: A noncommutative Chern character

Given

• \mathcal{A} C*-algebra p. e. $\mathcal{A} = C(B)$, B closed manifold

A_∞ ⊂ A "smooth" subalgebra (=closed under holomorphic functional calculus, dense, etc.)
 A_∞ = C[∞](B)

one gets

- a Z-graded Fréchet algebra $\hat{\Omega}_* \mathcal{A}_\infty$ of noncommutative differential forms with differential d : $\hat{\Omega}_k \mathcal{A}_\infty \rightarrow \hat{\Omega}_{k+1} \mathcal{A}_\infty$
- a Chern character ch : $\mathcal{K}_*(\mathcal{A}) o \mathcal{H}^{dR}_*(\mathcal{A}_\infty)$
- $H^{dR}_*(\mathcal{A}_\infty)$ pairs with continuous reduced cyclic cocycles on \mathcal{A}_∞

Basics in noncommutative index theory: A noncommutative Chern character

Given

• \mathcal{A} C*-algebra p. e. $\mathcal{A} = C(B)$, B closed manifold

A_∞ ⊂ A "smooth" subalgebra (=closed under holomorphic functional calculus, dense, etc.)
 A_∞ = C[∞](B)

one gets

- a Z-graded Fréchet algebra $\hat{\Omega}_* \mathcal{A}_\infty$ of noncommutative differential forms with differential d : $\hat{\Omega}_k \mathcal{A}_\infty \rightarrow \hat{\Omega}_{k+1} \mathcal{A}_\infty$
- a Chern character ch : $\mathcal{K}_*(\mathcal{A}) o H^{dR}_*(\mathcal{A}_\infty)$
- $H^{dR}_*(\mathcal{A}_\infty)$ pairs with continuous reduced cyclic cocycles on \mathcal{A}_∞

Motivating example used in higher index theory: Γ finitely generated group with length function, $\mathcal{A} = C^*\Gamma$, \mathcal{A}_{∞} the Connes-Moscovici algebra

Dirac operators over C^* -algebras

Given

- (M,g) closed oriented Riemannian manifold
- $E \to M$ hermitian bundle with Clifford action and compatible connection ($\mathbb{Z}/2$ -graded, if dim M even)
- $P \in C^{\infty}(M, M_n(\mathcal{A}_{\infty}))$ projection

we get an \mathcal{A} -vector bundle $\mathcal{F} := P(\mathcal{A}^n \times M) \to M$ and a (odd) Dirac operator $D_{\mathcal{F}} : C^{\infty}(M, E \otimes \mathcal{F}) \to C^{\infty}(M, E \otimes \mathcal{F}).$

• • = • • = •

Dirac operators over C^* -algebras

Given

- (M,g) closed oriented Riemannian manifold
- $E \to M$ hermitian bundle with Clifford action and compatible connection ($\mathbb{Z}/2$ -graded, if dim M even)

•
$$P \in C^\infty(M, M_n(\mathcal{A}_\infty))$$
 projection

we get an \mathcal{A} -vector bundle $\mathcal{F} := P(\mathcal{A}^n \times M) \to M$ and a (odd) Dirac operator $D_{\mathcal{F}} : C^{\infty}(M, E \otimes \mathcal{F}) \to C^{\infty}(M, E \otimes \mathcal{F})$. Important example for higher index theory:

the Mishenko-Fomenko vector bundle: $\mathcal{F} = \tilde{M} \times_{\Gamma} C^* \Gamma$ with $\Gamma = \pi_1(M)$. E = S the spinor bundle (gives twisted spin Dirac operator)

 $E = \Lambda^*(T^*M)$ (gives twisted de Rham or signature operator).

(過) (モン・モン・ヨ)

Index theory

The Dirac operator $D_{\mathcal{F}}$ is Fredholm on the Hilbert \mathcal{A} -module $L^2(M, E \otimes \mathcal{F})$ with $\operatorname{ind}(D_{\mathcal{F}}) \in K_*(\mathcal{A})$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Index theory

The Dirac operator $D_{\mathcal{F}}$ is Fredholm on the Hilbert \mathcal{A} -module $L^2(M, E \otimes \mathcal{F})$ with $\operatorname{ind}(D_{\mathcal{F}}) \in K_*(\mathcal{A})$.

Proposition (Atiyah-Singer index theorem)

$$\operatorname{ch}(\operatorname{ind}(D_{\mathcal{F}})) = \int_{M} \hat{A}(M) \operatorname{ch}(E/S) \operatorname{ch}(\mathcal{F}) \quad \in H^{dR}_{*}(\mathcal{A}_{\infty}) \;.$$

回 と く ヨ と く ヨ と

Index theory

The Dirac operator $D_{\mathcal{F}}$ is Fredholm on the Hilbert \mathcal{A} -module $L^2(M, E \otimes \mathcal{F})$ with $\operatorname{ind}(D_{\mathcal{F}}) \in K_*(\mathcal{A})$.

Proposition (Atiyah-Singer index theorem)

$$\operatorname{ch}(\operatorname{ind}(D_{\mathcal{F}})) = \int_{\mathcal{M}} \hat{A}(\mathcal{M}) \operatorname{ch}(\mathcal{E}/S) \operatorname{ch}(\mathcal{F}) \quad \in H^{dR}_*(\mathcal{A}_\infty) \;.$$

Application in higher index theory: If $D_{\mathcal{F}}$ is the signature operator twisted by $\mathcal{F} = \tilde{M} \times_{\Gamma} C^* \Gamma$, then $\operatorname{ind}(D_{\mathcal{F}})$ is homotopy invariant.

The proposition implies: By pairing $ch(ind(D_F))$ with cyclic cocycles one gets higher signatures.

This can be used to prove the Novikov conjecture for Gromov hyperbolic groups (Connes-Moscovici 1990).

(本間) (本語) (本語) (語)

Secondary invariants

Let A be a smoothing symmetric operator on $L^2(M, E \otimes \mathcal{F})$ such that $D_{\mathcal{F}} + A$ is invertible. (A should be odd if dim M is even.) Then one can define

$$\eta(\mathcal{D}_{\mathcal{F}},\mathcal{A})\in\hat{\Omega}_*\mathcal{A}_{\infty}/\overline{[\hat{\Omega}_*\mathcal{A}_{\infty},\hat{\Omega}_*\mathcal{A}_{\infty}]}+\mathsf{d}\,\hat{\Omega}_*\mathcal{A}_{\infty}$$

generalizing the classical $\eta\text{-invariant}$ (with $\mathcal{A}=\mathbb{C})$

$$\eta(D_{\mathcal{F}},A) = rac{1}{\sqrt{\pi}} \int_0^\infty t^{-rac{1}{2}} \mathrm{Tr}(D_{\mathcal{F}}e^{-t(D_{\mathcal{F}}+A)^2}) dt \; .$$

Secondary invariants

Let A be a smoothing symmetric operator on $L^2(M, E \otimes \mathcal{F})$ such that $D_{\mathcal{F}} + A$ is invertible. (A should be odd if dim M is even.) Then one can define

$$\eta(\mathcal{D}_{\mathcal{F}},\mathcal{A})\in\hat{\Omega}_*\mathcal{A}_{\infty}/\overline{[\hat{\Omega}_*\mathcal{A}_{\infty},\hat{\Omega}_*\mathcal{A}_{\infty}]}+\mathsf{d}\,\hat{\Omega}_*\mathcal{A}_{\infty}$$

generalizing the classical η -invariant (with $\mathcal{A} = \mathbb{C}$)

$$\eta(D_{\mathcal{F}},A) = \frac{1}{\sqrt{\pi}} \int_0^\infty t^{-\frac{1}{2}} \mathrm{Tr}(D_{\mathcal{F}} e^{-t(D_{\mathcal{F}}+A)^2}) dt \; .$$

Higher η -invariants were introduced by Lott (1992). The general definition is implicit in work of Lott (1999).

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Atiyah-Patodi-Singer index theorem

Let M be an oriented Riemannian manifold with cylindric end $Z = \mathrm{IR}^+ \times \partial M$. On Z all structures are assumed of product type. If dim M is even, then on Z

$$D_{\mathcal{F}}^+ = c(dx)(\partial_x - D_{\mathcal{F}}^\partial)$$
.

Let A be a symmetric, smoothing operator on $L^2(\partial M, E^+ \otimes \mathcal{F})$ such that $D_{\mathcal{F}}^{\partial} + A$ is invertible.

Let $\chi: M \to {\rm I\!R}$ be smooth, supp $\chi \subset Z$; supp $(\chi - 1)$ compact.

Proposition (W., 2009)

$$\operatorname{ch\,ind}(D^+_P - c(dx)\chi(x)A) = \int_M \hat{A}(M)\operatorname{ch}(E/S)\operatorname{ch}(\mathcal{F}) - \eta(D^\partial_{\mathcal{F}},A) \;.$$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Atiyah-Patodi-Singer index theorem

Let M be an oriented Riemannian manifold with cylindric end $Z = \mathrm{IR}^+ \times \partial M$. On Z all structures are assumed of product type. If dim M is even, then on Z

$$D_{\mathcal{F}}^+ = c(dx)(\partial_x - D_{\mathcal{F}}^\partial)$$
.

Let A be a symmetric, smoothing operator on $L^2(\partial M, E^+ \otimes \mathcal{F})$ such that $D_{\mathcal{F}}^{\partial} + A$ is invertible.

Let $\chi: M \to {\rm I\!R}$ be smooth, supp $\chi \subset Z$; supp $(\chi - 1)$ compact.

Proposition (W., 2009)

$$\operatorname{ch\,ind}(D^+_P - c(dx)\chi(x)A) = \int_M \hat{A}(M)\operatorname{ch}(E/S)\operatorname{ch}(\mathcal{F}) - \eta(D^\partial_{\mathcal{F}},A) \;.$$

The proposition generalizes the higher APS index theorem proven by Leichtnam-Piazza (1997-2000).

Charlotte Wahl (Hannover)

Invariants for homotopy equivalences

ECOAS 2010 6 / 12

Higher ρ -invariants for homotopy equivalences

Let M, N be odd-dimensional oriented closed Riemannian manifolds, $f: M \rightarrow N$ a smooth orientation preserving homotopy equivalence.

$$\mathcal{A} = C^* \Gamma$$
, $\Gamma = \pi_1(N)$.

 $\mathcal{F}_N = \tilde{N} \times_{\Gamma} C^* \Gamma$ Mishenko-Fomenko bundle, $\mathcal{F}_M = f^* \mathcal{F}_N$.

 $D_{\mathcal{F}}$ signature operator on $N \cup M^{op}$ twisted by $\mathcal{F}_N \cup \mathcal{F}_M$.

Higher ρ -invariants for homotopy equivalences

Let M, N be odd-dimensional oriented closed Riemannian manifolds, $f: M \rightarrow N$ a smooth orientation preserving homotopy equivalence.

$$\mathcal{A} = C^* \Gamma$$
, $\Gamma = \pi_1(N)$.

 $\mathcal{F}_N = \tilde{N} \times_{\Gamma} C^* \Gamma$ Mishenko-Fomenko bundle, $\mathcal{F}_M = f^* \mathcal{F}_N$.

 $D_{\mathcal{F}}$ signature operator on $N \cup M^{op}$ twisted by $\mathcal{F}_N \cup \mathcal{F}_M$.

Piazza-Schick (2007) constructed a smoothing operator A such that $D_{\mathcal{F}} + A$ is invertible (based on results of Hilsum-Skandalis 1992).

Higher ρ -invariants for homotopy equivalences

Let M, N be odd-dimensional oriented closed Riemannian manifolds, $f: M \rightarrow N$ a smooth orientation preserving homotopy equivalence.

$$\mathcal{A} = C^* \Gamma$$
, $\Gamma = \pi_1(N)$.

 $\mathcal{F}_N = \tilde{N} \times_{\Gamma} C^* \Gamma$ Mishenko-Fomenko bundle, $\mathcal{F}_M = f^* \mathcal{F}_N$.

 $D_{\mathcal{F}}$ signature operator on $N \cup M^{op}$ twisted by $\mathcal{F}_N \cup \mathcal{F}_M$.

Piazza-Schick (2007) constructed a smoothing operator A such that $D_{\mathcal{F}} + A$ is invertible (based on results of Hilsum-Skandalis 1992).

Let
$$\hat{\Omega}^{\langle e \rangle}_*(\mathcal{A}_\infty) = \mathbb{C} < g_0 \operatorname{d} g_1 \ldots \operatorname{d} g_m \mid g_0 g_1 \ldots g_m = e > \subset \hat{\Omega}_* \mathcal{A}_\infty.$$

Definition

$$\rho(f) := [\eta(D_{\mathcal{F}}, A)] \in \hat{\Omega}_* \mathcal{A}_{\infty} / \overline{[\hat{\Omega}_* \mathcal{A}_{\infty}, \hat{\Omega}_* \mathcal{A}_{\infty}] + \mathsf{d}\, \hat{\Omega}_* \mathcal{A}_{\infty} + \hat{\Omega}_*^{< e >} \mathcal{A}_{\infty}} \; .$$

() $\rho(f)$ does not depend on the choices involved in the definition of *A*.

A (10) F (10)

- $\rho(f)$ does not depend on the choices involved in the definition of A.
- 2 $\rho(f)$ is independent of the metrics on *M* and *N*.

• • = • •

- $\rho(f)$ does not depend on the choices involved in the definition of A.
- **2** $\rho(f)$ is independent of the metrics on *M* and *N*.
- $\rho(f)$ depends on f only up to homotopy.

→ ∃ →

- $\rho(f)$ does not depend on the choices involved in the definition of A.
- **2** $\rho(f)$ is independent of the metrics on *M* and *N*.
- $\rho(f)$ depends on f only up to homotopy.
- ρ is well-defined on the surgery structure set S(N).

- **(** $\rho(f)$ does not depend on the choices involved in the definition of *A*.
- **2** $\rho(f)$ is independent of the metrics on *M* and *N*.
- $\rho(f)$ depends on f only up to homotopy.
- ρ is well-defined on the surgery structure set S(N).
- By pairing with suitable traces one recovers ρ_{APS}(N) ρ_{APS}(M) resp. ρ_{L²}(N) ρ_{L²}(M) (Piazza-Schick 2007).

- **(** $\rho(f)$ does not depend on the choices involved in the definition of *A*.
- **2** $\rho(f)$ is independent of the metrics on *M* and *N*.
- $\rho(f)$ depends on f only up to homotopy.
- ρ is well-defined on the surgery structure set S(N).
- By pairing with suitable traces one recovers ρ_{APS}(N) ρ_{APS}(M) resp. ρ_{L²}(N) ρ_{L²}(M) (Piazza-Schick 2007).
- (Product formula) If $N = N_1 \times X$, $M = M_1 \times X$, $f = f_1 \times id_X$, then $\rho(f) = \rho(f_1) \operatorname{ch}(\operatorname{ind}(D_{\mathcal{F}_X}))$.

過 ト イヨト イヨト

- **(** $\rho(f)$ does not depend on the choices involved in the definition of *A*.
- **2** $\rho(f)$ is independent of the metrics on *M* and *N*.
- $\rho(f)$ depends on f only up to homotopy.
- ρ is well-defined on the surgery structure set S(N).
- By pairing with suitable traces one recovers ρ_{APS}(N) ρ_{APS}(M) resp. ρ_{L²}(N) ρ_{L²}(M) (Piazza-Schick 2007).
- (Product formula) If $N = N_1 \times X$, $M = M_1 \times X$, $f = f_1 \times id_X$, then $\rho(f) = \rho(f_1) \operatorname{ch}(\operatorname{ind}(D_{\mathcal{F}_X}))$.

過 ト イヨト イヨト

- **(**) $\rho(f)$ does not depend on the choices involved in the definition of *A*.
- **2** $\rho(f)$ is independent of the metrics on *M* and *N*.
- $\rho(f)$ depends on f only up to homotopy.
- ρ is well-defined on the surgery structure set S(N).
- By pairing with suitable traces one recovers ρ_{APS}(N) ρ_{APS}(M) resp. ρ_{L²}(N) ρ_{L²}(M) (Piazza-Schick 2007).
- (Product formula) If $N = N_1 \times X$, $M = M_1 \times X$, $f = f_1 \times id_X$, then $\rho(f) = \rho(f_1) \operatorname{ch}(\operatorname{ind}(D_{\mathcal{F}_X}))$.

The proofs use the APS index theorem. Local terms vanish since we divided out $\hat{\Omega}_*^{< e>}\mathcal{A}_\infty.$

(4) is based on a generalization of results of Hilsum-Skandalis (1992) to manifolds with cylindric ends.

(6) uses a product formula for noncommutative η -forms (W., 2009).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Applications

dim N = 4k - 1, $k \ge 2$, $\Gamma = \pi_1(N)$ not torsion free

Proposition (Chang-Weinberger 2003)

There are homotopy equivalences $f_i : M_i \to N, i \in \mathbb{N}$ such that $\rho_{L^2}(M_i) \neq \rho_{L^2}(M_j), i \neq j$. Thus $[(M_i, f_i)]$ are distinct in $\mathcal{S}(N)$.

A (10) A (10) A (10)

Applications

dim N = 4k - 1, $k \ge 2$, $\Gamma = \pi_1(N)$ not torsion free

Proposition (Chang-Weinberger 2003)

There are homotopy equivalences $f_i : M_i \to N, i \in \mathbb{N}$ such that $\rho_{L^2}(M_i) \neq \rho_{L^2}(M_j), i \neq j$. Thus $[(M_i, f_i)]$ are distinct in $\mathcal{S}(N)$.

Corollary

Let X be a closed manifold with a non-zero higher signature. Assume that $\pi_1(X)$, Γ are Gromov hyperbolic. Then $[(M_i \times X, f_i \times id_X)]$ are distinct in $S(N \times X)$ and distinguished by $\rho(f_i \times id_X)$.

くほと くほと くほと

Applications

dim N = 4k - 1, $k \ge 2$, $\Gamma = \pi_1(N)$ not torsion free

Proposition (Chang-Weinberger 2003)

There are homotopy equivalences $f_i : M_i \to N, i \in \mathbb{N}$ such that $\rho_{L^2}(M_i) \neq \rho_{L^2}(M_j), i \neq j$. Thus $[(M_i, f_i)]$ are distinct in $\mathcal{S}(N)$.

Corollary

Let X be a closed manifold with a non-zero higher signature. Assume that $\pi_1(X)$, Γ are Gromov hyperbolic. Then $[(M_i \times X, f_i \times id_X)]$ are distinct in $S(N \times X)$ and distinguished by $\rho(f_i \times id_X)$.

Idea of proof: A non-zero higher signature implies that $\operatorname{chind}(D_{\mathcal{F}_X}) \neq 0$. Now apply product formula to $\rho(f_i \times \operatorname{id})$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Open questions I

 $\Gamma = \pi_1(N)$

Does the following diagram commute?

A positive answer to this question would lead to more general applications.

Open questions II

What is the connection with

• the Higson-Roe map "from surgery to analysis" (2004)?

Open questions II

What is the connection with

• the Higson-Roe map "from surgery to analysis" (2004)?

• the Higson-Roe interpretation of the APS *ρ*-invariant (2010)?

ECOAS 2010 11 / 12

Some literature

- S. Chang & S. Weinberger, "On invariants of Hirzebruch and Cheeger-Gromov", *Geom. Topol.* 7 (2003), pp. 311–319
- N. Higson & J. Roe, "Mapping surgery to analysis. I-III." *K-theory* 33 (2004), pp. 277–346
- P. Piazza & T. Schick, "Bordism, rho-invariants and the Baum-Connes conjecture", *J. Noncommut. Geom.* 1 (2007), pp. 27–111
- N. Higson & J. Roe, "K-homology, assembly and rigidity theorems for relative eta invariants", *Pure Appl. Math. Quart.* 6 (2010), pp. 1–30
- C. W., Higher ρ-invariants and the surgery structure set, arXiv:1008.3644

• • = • • = •