Sample solutions to questions for algebra preliminary exam

Problem 1. Let A be a real 2×2 matrix such that $\binom{1}{2}$ is an eigenvector with eigenvalue 3 and such that $\binom{2}{1}$ is an eigenvector with eigenvalue -2 . Compute A^{-1} applied to $\binom{7}{8}$.
Solution. One way to proceed is to determine A via a "reverse diagonalization"

$$
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)\left(\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right)^{-1}
$$

then calculate A^{-1}, then apply it to the required vector.
A more elegant way is to note that if v is an eigenvector of A with eigenvalue λ then v is an eigenvector of A^{-1} with eigenvalue λ^{-1}. Then we simply decompose $\binom{7}{8}=3\binom{1}{2}+2\binom{2}{1}$ and then apply

$$
A^{-1}\binom{7}{8}=3 A^{-1}\binom{1}{2}+2 A^{-1}\binom{2}{1}=3 \frac{1}{3}\binom{1}{2}+2 \frac{1}{-2}\binom{2}{1}=\binom{-1}{1} .
$$

Problem 2. Determine whether the surface in \mathbb{R}^{3} defined by

$$
x^{2}+y^{2}+z^{2}-2 x y-2 x z-2 y z=1
$$

is a ellipsoid (an ellipse rotated about one of its axes) or a hyperboloid (a hyperbola rotated about one of its axes).
Solution. Since the surface is defined by a quadratic equation, we can rewrite the equation as $X^{t} A X=1$, where

$$
A=\left(\begin{array}{rrr}
1 & -1 & -1 \\
-1 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right), \quad X=\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
$$

By the spectral theorem for symmetric operators on a real vector space, we can find an orthogonal matrix Q (whose rows are an orthonormal basis of eigenvectors of A) and a diagonal matrix D (whose diagonal elements are the eigenvalues) so that $A=Q D Q^{-1}$. Since $Q^{-1}=Q^{t}$, the equation becomes $\left(Q^{t} X\right)^{t} D\left(Q^{t} X\right)=1$, showing that Q^{t} transforms the equation to "standard" diagonal form. Since the charateristic polynomial of A is (up to a sign) $t^{3}-3 t^{2}+4=(t+1)(t-2)^{2}$, the eigenvalues of A have sign,,-++ : since these are not all positive, the surface is a (one-sheeted) hyperboloid.
Problem 3. Let $n \in \mathbb{Z}_{\geq 1}$, and let V be the vector space of real polynomials of degree at most n. Consider the linear operator $T: V \rightarrow V$ defined by $T(f)(x)=f(1-x)$.
(a) Compute the determinant of T.
(b) Consider the bilinear form on V defined by $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) \mathrm{d} x$. Show that T is selfadjoint with respect to this inner product.
(c) For $n=2$, find a basis of V consisting of eigenvectors for T.

Solution. For (a), the determinant of T can be calculated on any basis, so we can use $1, x, x^{2}, \ldots, x^{n}$. Since $(1-x)^{n}=(-1)^{n} x^{n}+\cdots+(-1)^{n}$, the matrix of T with respect to this basis is upper-triangular, with entries alternating in sign, e.g., for $n=2$:

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & -1 & -2 \\
0 & 0 & 1
\end{array}\right)
$$

and hence the determinant of T is $(-1)^{\lceil n / 2\rceil}=1,-1,-1,1,1,-1,-1, \ldots$.
For (b), we compute

$$
\langle T(f), g\rangle=\int_{0}^{1} f(1-x) g(x) d x=\int_{0}^{1} f(u) g(1-u) d u=\langle f, T(g)\rangle
$$

by employing the u-substitution $u=1-x$. Hence T is self-adjoint.
For (c), by looking at the matrix above, we know the eigenvalues of T. So we are looking to solve the equation $f(1-x)= \pm f(x)$. Clearly $f(x)=1$ is an eigenvector with eigenvalue $\lambda=1$; the other is $f(x)=x(1-x)=x-x^{2}$. Finally, $f(x)=x-(1-x)=-1+2 x$ is an eigenvector with eigenvalue -1 .
Problem 4. Let V be a finite-dimensional vector space and $T: V \rightarrow V$ a linear operator satisfying $T^{2}=T$.
(a) Show that the only possible eigenvalues of T are zero or one.
(b) If E_{λ} is the λ-eigenspace, show that $E_{0}=\operatorname{ker} T$ and E_{1} is the image of T.
(c) Show that T is diagonalizable.

Solution. For (a), one could observe that the minimal polynomial must divide $x(x-1)$, or missing that try the direct approach. Suppose that $T(v)=\lambda v$ for some nonzero v. Then

$$
T(v)=T^{2}(v)=T(T(v))=T(\lambda v)=\lambda T(v),
$$

so that $(\lambda-1) T(v)=0$, so either $\lambda=1$, or T has nontrivial kernel, so has eigenvalue 0 .
For (b), by definition $E_{0}=\operatorname{ker} T$. If $v \in E_{1}$, then $T(v)=v$, so v is in the image. Conversely, if w is in the image of T, say $w=T(v)$, then

$$
T(w)=T^{2}(v)=T(v)=w
$$

so $w \in E_{1}$.
For (c), this follows from the fact that the minimal polynomial is separable (has no repeated roots), or directly: since $\operatorname{dim} E_{0}=$ nullity T and $\operatorname{dim} E_{1}=\operatorname{rk} T$ and $E_{1} \cap E_{0}=\{0\}$, rank-nullity says that V has a basis consisting of eigenvectors for T.
Problem 5. Let V be a finite-dimensional vector space over a field F, let $V^{*}:=\operatorname{Hom}_{F}(V, F)$ be its dual space, and let $B: V \times V \rightarrow F$ be a nondegenerate bilinear form. Let $W \subseteq V$ be a subspace and

$$
W^{\perp}:=\{v \in V: B(v, w)=0 \text { for all } w \in W\} .
$$

Show that $V / W^{\perp} \simeq W^{*}$.

Solution. The bilinear form B induces a map $v \mapsto v^{*} \in V^{*}$ where $v^{*}(x)=B(v, x)$ for $x \in V$. Since B is nondegenerate, this map is an isomorphism. If we further restrict to W, we obtain a map $V \rightarrow W^{*}$ by $\left.v \mapsto v^{*}\right|_{W}$. The kernel of this map is $\{v \in V: B(v, w)=0$ for all $w \in W\}=W^{\perp}$. The restriction map $V^{*} \rightarrow W^{*}$ is surjective, since $V=W \oplus W^{\perp}$ so given $\phi \in W^{*}$ we can extend by zero on W^{\perp} to get $\phi \in V^{*}$. Therefore $V / W^{\perp} \simeq W^{*}$.
Problem 6. Let $G:=\mathbb{Z} \times \mathbb{Z}$ and let $H:=\langle(2,3),(3,2)\rangle \subseteq G$ be the subgroup generated by $(2,3)$ and $(3,2)$. Show that G / H is a cyclic group and compute its order.
Solution. There are several ways to do this depending on the experience of the student. The more sophisticated way considers a \mathbb{Z}-linear map $T: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ given with respect to standard bases by the matrix $A=\left(\begin{array}{ll}2 & 3 \\ 3 & 2\end{array}\right)$. We are interested in the cokernel, $\mathbb{Z}^{2} / T\left(\mathbb{Z}^{2}\right)$, which is unaffected by elementary row and column operations which reduces A to $\left(\begin{array}{ll}1 & 0 \\ 0 & 5\end{array}\right)$ from which it follows that $G / H \simeq \mathbb{Z} / 5 \mathbb{Z}$.

Taking a more pedestrian approach, it is clear that H is also given by $H=\langle(1,-1),(0,5)\rangle$, and since $G=\mathbb{Z}^{2}$ has generators $(1,-1),(0,1)$, it is again quick to deduce the quotient. Concretely, G / H is the cyclic group generated by the coset $(0,1)+H$.
Problem 7. Let $H=\langle\sigma, \tau\rangle \subseteq S_{4}$ be the subgroup of the symmetric group S_{4} generated by the elements $\sigma:=(12)$ and $\tau:=(34)$.
(a) Compute the order of H.
(b) Show that H is not a normal subgroup of S_{4}.
(c) Compute the normalizer of H in S_{4}.

Solution. For (a), the 2-cycles have order 2 and disjoint cycles commute, so H is a group of order 4 isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.

For (b), we know that for any permutation ρ, and r-cycle $\left(a_{1} a_{2} \cdots a_{r}\right)$, that

$$
\rho\left(a_{1} a_{2}, \cdots a_{r}\right) \rho^{-1}=\left(\rho\left(a_{1}\right) \rho\left(a_{2}\right), \cdots \rho\left(a_{r}\right)\right)
$$

Now observe that $(1234) \sigma(1234)^{-1}=(23) \notin H$, so H is not normal in S_{4}.
We know that $H \leq N:=N_{S_{4}}(H) \leq S_{4}$, and since H is not normal, $N_{S_{4}}(H) \neq S_{4}$. By Lagrange's theorem, we have $4=\# H|\# N| 24$, so $\# N=4,8,12$.

If we let S_{4} act on its subgroups by conjugation, then the orbit-stabilizer theorem says that $\left[S_{4}: N_{S_{4}}(H)\right]$ is equal to the number of conjugates of H. Since each group conjugate to H in S_{4} is generated by a pair of disjoint transpositions, counting we find that there are three conjugates of H, hence $\# N=8$, and it is easy to check that $\rho=(1324)$ is in the normalizer, so $N=N_{S_{4}}(H)=$ $\langle\sigma, \tau, \rho\rangle$ is a dihedral group of order 8.
Problem 8. Let p be prime and let R be a ring (with 1) with $\# R=p^{2}$. Show R is commutative.
Solution. The ring R is in particular an abelian group, so either $R \simeq \mathbb{Z} / p^{2} \mathbb{Z}$ or $R \simeq \mathbb{Z} / p \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$ as abelian groups. In the first case, the multiplication law is unique, since $1 \cdot 1=1$ so the rest is determined by distributivity. In the second case, it is determined on the subring $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ generated by 1 ; let $x \in R$ be not in the span of 1 : then R is commutative, because x commutes with itself (and 1), so it commutes with every $a x+b \in R$ (with $a, b \in \mathbb{Z} / p \mathbb{Z}$).

Problem 9. Indicate whether each of the statements below is true or false. If true, briefly justify the statement; if false, provide an explicit counterexample.
(a) Let $I \subsetneq \mathbb{Z}[x]$ be a proper ideal satisfying $\langle x\rangle \subseteq I \subsetneq \mathbb{Z}[x]$. Then I is a prime ideal.
(b) In a PID, nonzero prime ideals are maximal.
(c) Let $f(x) \in \mathbb{Q}[x]$ be irreducible. Then f is irreducible in $\mathbb{Q}[x, y]$.
(d) If $p \in \mathbb{Z}$ is a prime, $\left\langle x^{3}-p\right\rangle$ is a maximal ideal in $\mathbb{Z}[x]$.
(e) $26 x^{3}+x+64$ is irreducible in $\mathbb{Z}[x]$.

Solution. Statement (a) is false: $\langle x, 4\rangle$ is not prime.
Statement (b) is true: nonzero principal prime ideals in an integral domain are generated by prime, hence irreducible elements, which in a PID generate maximal ideals.

Statement (c): true! Try to factor as polynomials in $\mathbb{Q}[x][y]$ and force the degree in y to be zero, which brings the problem down to $\mathbb{Q}[x]$, and we know $\mathbb{Q}[x, y]^{\times}=\mathbb{Q}[x]^{\times}=\mathbb{Q}^{\times}$.

For (d), we claim it is false. By Eisenstein's criterion, we know that $x^{3}-p$ is irreducible in $\mathbb{Q}[x]$, and since primitive, is irreducible in $\mathbb{Z}[x]$. In $\mathbb{Q}[x]$ this would generate a maximal ideal, but not in $\mathbb{Z}[x]$, for example $\left\langle x^{3}-p, n\right\rangle$ is strictly larger (and still proper) for any $n \geq 2$.

Finally (e) is true: it's a cubic, so we might think about roots, but it is ugly enough not to be tempted. And Eisenstein is out, so we think of reduction criteria. Mod 2 is of no value but in $(\mathbb{Z} / 3 \mathbb{Z})[x]$ the polynomial is $2 x^{3}+x+1$ which has no roots in $\mathbb{Z} / 3 \mathbb{Z}$ (a field) so is irreducible there, so must be irreducible in $\mathbb{Z}[x]$ (primitive).
Problem 10. Let $R \subseteq \mathbb{C}$ be a subring which is finite-dimensional as a \mathbb{Q}-vector space. Show that R is a field.

Solution. First, R is a domain, since it is a subring of \mathbb{C}. We need to show all nonzero elements of R have inverses. Let $a \in R$ be nonzero. Then the map $R \rightarrow R$ by $x \mapsto a x$ is \mathbb{Q}-linear and injective because R is a domain. Therefore as a map of finite-dimensional \mathbb{Q}-vector spaces this map is also surjective, so there exists $b \in R$ such that $a b=1$. Thus R is a field.

