Sample solutions to questions for algebra preliminary exam

Problem 1. Let A be a real 2×2 matrix such that $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ is an eigenvector with eigenvalue 3 and such that $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ is an eigenvector with eigenvalue -2. Compute A^{-1} applied to $\begin{pmatrix} 7 \\ 8 \end{pmatrix}$. Solution. One way to proceed is to determine A via a "reverse diagonalization"

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}^{-1}$$

then calculate A^{-1} , then apply it to the required vector.

A more elegant way is to note that if v is an eigenvector of A with eigenvalue λ then v is an eigenvector of A^{-1} with eigenvalue λ^{-1} . Then we simply decompose $\binom{7}{8} = 3\binom{1}{2} + 2\binom{2}{1}$ and then apply

$$A^{-1}\begin{pmatrix}7\\8\end{pmatrix} = 3A^{-1}\begin{pmatrix}1\\2\end{pmatrix} + 2A^{-1}\begin{pmatrix}2\\1\end{pmatrix} = 3\frac{1}{3}\begin{pmatrix}1\\2\end{pmatrix} + 2\frac{1}{-2}\begin{pmatrix}2\\1\end{pmatrix} = \begin{pmatrix}-1\\1\end{pmatrix}.$$

Problem 2. Determine whether the surface in \mathbb{R}^3 defined by

$$x^2 + y^2 + z^2 - 2xy - 2xz - 2yz = 1$$

is a ellipsoid (an ellipse rotated about one of its axes) or a hyperboloid (a hyperbola rotated about one of its axes).

Solution. Since the surface is defined by a quadratic equation, we can rewrite the equation as $X^{t}AX = 1$, where

$$A = \begin{pmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}, \qquad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$$

By the spectral theorem for symmetric operators on a real vector space, we can find an orthogonal matrix Q (whose rows are an orthonormal basis of eigenvectors of A) and a diagonal matrix D (whose diagonal elements are the eigenvalues) so that $A = QDQ^{-1}$. Since $Q^{-1} = Q^t$, the equation becomes $(Q^tX)^tD(Q^tX) = 1$, showing that Q^t transforms the equation to "standard" diagonal form. Since the charateristic polynomial of A is (up to a sign) $t^3 - 3t^2 + 4 = (t+1)(t-2)^2$, the eigenvalues of A have sign -, +, +: since these are not all positive, the surface is a (one-sheeted) hyperboloid.

Problem 3. Let $n \in \mathbb{Z}_{\geq 1}$, and let V be the vector space of real polynomials of degree at most n. Consider the linear operator $T: V \to V$ defined by T(f)(x) = f(1-x).

- (a) Compute the determinant of T.
- (b) Consider the bilinear form on V defined by $\langle f, g \rangle = \int_0^1 f(x)g(x) \, dx$. Show that T is self-adjoint with respect to this inner product.

(c) For n = 2, find a basis of V consisting of eigenvectors for T.

Solution. For (a), the determinant of T can be calculated on any basis, so we can use $1, x, x^2, \ldots, x^n$. Since $(1-x)^n = (-1)^n x^n + \cdots + (-1)^n$, the matrix of T with respect to this basis is upper-triangular, with entries alternating in sign, e.g., for n = 2:

$$\begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

and hence the determinant of T is $(-1)^{\lceil n/2 \rceil} = 1, -1, -1, 1, 1, -1, -1, ...$

For (b), we compute

$$\langle T(f), g \rangle = \int_0^1 f(1-x)g(x) \, dx = \int_0^1 f(u)g(1-u) \, du = \langle f, T(g) \rangle$$

by employing the u-substitution u = 1 - x. Hence T is self-adjoint.

For (c), by looking at the matrix above, we know the eigenvalues of T. So we are looking to solve the equation $f(1-x) = \pm f(x)$. Clearly f(x) = 1 is an eigenvector with eigenvalue $\lambda = 1$; the other is $f(x) = x(1-x) = x - x^2$. Finally, f(x) = x - (1-x) = -1 + 2x is an eigenvector with eigenvalue -1.

Problem 4. Let V be a finite-dimensional vector space and $T: V \to V$ a linear operator satisfying $T^2 = T$.

- (a) Show that the only possible eigenvalues of T are zero or one.
- (b) If E_{λ} is the λ -eigenspace, show that $E_0 = \ker T$ and E_1 is the image of T.
- (c) Show that T is diagonalizable.

Solution. For (a), one could observe that the minimal polynomial must divide x(x-1), or missing that try the direct approach. Suppose that $T(v) = \lambda v$ for some nonzero v. Then

$$T(v) = T^{2}(v) = T(T(v)) = T(\lambda v) = \lambda T(v),$$

so that $(\lambda - 1)T(v) = 0$, so either $\lambda = 1$, or T has nontrivial kernel, so has eigenvalue 0.

For (b), by definition $E_0 = \ker T$. If $v \in E_1$, then T(v) = v, so v is in the image. Conversely, if w is in the image of T, say w = T(v), then

$$T(w) = T^2(v) = T(v) = w,$$

so $w \in E_1$.

For (c), this follows from the fact that the minimal polynomial is separable (has no repeated roots), or directly: since dim E_0 = nullity T and dim E_1 = rk T and $E_1 \cap E_0 = \{0\}$, rank-nullity says that V has a basis consisting of eigenvectors for T.

Problem 5. Let V be a finite-dimensional vector space over a field F, let $V^* := \text{Hom}_F(V, F)$ be its dual space, and let $B: V \times V \to F$ be a nondegenerate bilinear form. Let $W \subseteq V$ be a subspace and

$$W^{\perp} := \{ v \in V : B(v, w) = 0 \text{ for all } w \in W \}.$$

Show that $V/W^{\perp} \simeq W^*$.

Solution. The bilinear form B induces a map $v \mapsto v^* \in V^*$ where $v^*(x) = B(v, x)$ for $x \in V$. Since B is nondegenerate, this map is an isomorphism. If we further restrict to W, we obtain a map $V \to W^*$ by $v \mapsto v^*|_W$. The kernel of this map is $\{v \in V : B(v, w) = 0 \text{ for all } w \in W\} = W^{\perp}$. The restriction map $V^* \to W^*$ is surjective, since $V = W \oplus W^{\perp}$ so given $\phi \in W^*$ we can extend by zero on W^{\perp} to get $\phi \in V^*$. Therefore $V/W^{\perp} \simeq W^*$.

Problem 6. Let $G := \mathbb{Z} \times \mathbb{Z}$ and let $H := \langle (2,3), (3,2) \rangle \subseteq G$ be the subgroup generated by (2,3) and (3,2). Show that G/H is a cyclic group and compute its order.

Solution. There are several ways to do this depending on the experience of the student. The more sophisticated way considers a \mathbb{Z} -linear map $T: \mathbb{Z}^2 \to \mathbb{Z}^2$ given with respect to standard bases by the matrix $A = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}$. We are interested in the cokernel, $\mathbb{Z}^2/T(\mathbb{Z}^2)$, which is unaffected by

elementary row and column operations which reduces A to $\begin{pmatrix} 1 & 0 \\ 0 & 5 \end{pmatrix}$ from which it follows that $G/H \simeq \mathbb{Z}/5\mathbb{Z}$.

Taking a more pedestrian approach, it is clear that H is also given by $H = \langle (1, -1), (0, 5) \rangle$, and since $G = \mathbb{Z}^2$ has generators (1, -1), (0, 1), it is again quick to deduce the quotient. Concretely, G/H is the cyclic group generated by the coset (0, 1) + H.

Problem 7. Let $H = \langle \sigma, \tau \rangle \subseteq S_4$ be the subgroup of the symmetric group S_4 generated by the elements $\sigma := (12)$ and $\tau := (34)$.

- (a) Compute the order of H.
- (b) Show that H is not a normal subgroup of S_4 .
- (c) Compute the normalizer of H in S_4 .

Solution. For (a), the 2-cycles have order 2 and disjoint cycles commute, so H is a group of order 4 isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

For (b), we know that for any permutation ρ , and *r*-cycle $(a_1 a_2 \cdots a_r)$, that

$$\rho(a_1 a_2, \cdots a_r)\rho^{-1} = (\rho(a_1) \rho(a_2), \cdots \rho(a_r)).$$

Now observe that $(1234)\sigma(1234)^{-1} = (23) \notin H$, so H is not normal in S_4 .

We know that $H \leq N := N_{S_4}(H) \leq S_4$, and since H is not normal, $N_{S_4}(H) \neq S_4$. By Lagrange's theorem, we have $4 = \#H \mid \#N \mid 24$, so #N = 4, 8, 12.

If we let S_4 act on its subgroups by conjugation, then the orbit-stabilizer theorem says that $[S_4: N_{S_4}(H)]$ is equal to the number of conjugates of H. Since each group conjugate to H in S_4 is generated by a pair of disjoint transpositions, counting we find that there are three conjugates of H, hence #N = 8, and it is easy to check that $\rho = (1324)$ is in the normalizer, so $N = N_{S_4}(H) = \langle \sigma, \tau, \rho \rangle$ is a dihedral group of order 8.

Problem 8. Let p be prime and let R be a ring (with 1) with $\#R = p^2$. Show R is commutative. Solution. The ring R is in particular an abelian group, so either $R \simeq \mathbb{Z}/p^2\mathbb{Z}$ or $R \simeq \mathbb{Z}/p\mathbb{Z} \oplus \mathbb{Z}/p\mathbb{Z}$ as abelian groups. In the first case, the multiplication law is unique, since $1 \cdot 1 = 1$ so the rest is determined by distributivity. In the second case, it is determined on the subring $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ generated by 1; let $x \in R$ be not in the span of 1: then R is commutative, because x commutes with itself (and 1), so it commutes with every $ax + b \in R$ (with $a, b \in \mathbb{Z}/p\mathbb{Z}$). **Problem 9**. Indicate whether each of the statements below is true or false. If true, briefly justify the statement; if false, provide an explicit counterexample.

- (a) Let $I \subsetneq \mathbb{Z}[x]$ be a proper ideal satisfying $\langle x \rangle \subseteq I \subsetneq \mathbb{Z}[x]$. Then I is a prime ideal.
- (b) In a PID, nonzero prime ideals are maximal.
- (c) Let $f(x) \in \mathbb{Q}[x]$ be irreducible. Then f is irreducible in $\mathbb{Q}[x, y]$.
- (d) If $p \in \mathbb{Z}$ is a prime, $\langle x^3 p \rangle$ is a maximal ideal in $\mathbb{Z}[x]$.
- (e) $26x^3 + x + 64$ is irreducible in $\mathbb{Z}[x]$.

Solution. Statement (a) is false: $\langle x, 4 \rangle$ is not prime.

Statement (b) is true: nonzero principal prime ideals in an integral domain are generated by prime, hence irreducible elements, which in a PID generate maximal ideals.

Statement (c): true! Try to factor as polynomials in $\mathbb{Q}[x][y]$ and force the degree in y to be zero, which brings the problem down to $\mathbb{Q}[x]$, and we know $\mathbb{Q}[x, y]^{\times} = \mathbb{Q}[x]^{\times} = \mathbb{Q}^{\times}$.

For (d), we claim it is false. By Eisenstein's criterion, we know that $x^3 - p$ is irreducible in $\mathbb{Q}[x]$, and since primitive, is irreducible in $\mathbb{Z}[x]$. In $\mathbb{Q}[x]$ this would generate a maximal ideal, but not in $\mathbb{Z}[x]$, for example $\langle x^3 - p, n \rangle$ is strictly larger (and still proper) for any $n \geq 2$.

Finally (e) is true: it's a cubic, so we might think about roots, but it is ugly enough not to be tempted. And Eisenstein is out, so we think of reduction criteria. Mod 2 is of no value but in $(\mathbb{Z}/3\mathbb{Z})[x]$ the polynomial is $2x^3 + x + 1$ which has no roots in $\mathbb{Z}/3\mathbb{Z}$ (a field) so is irreducible there, so must be irreducible in $\mathbb{Z}[x]$ (primitive).

Problem 10. Let $R \subseteq \mathbb{C}$ be a subring which is finite-dimensional as a \mathbb{Q} -vector space. Show that R is a field.

Solution. First, R is a domain, since it is a subring of \mathbb{C} . We need to show all nonzero elements of R have inverses. Let $a \in R$ be nonzero. Then the map $R \to R$ by $x \mapsto ax$ is \mathbb{Q} -linear and injective because R is a domain. Therefore as a map of finite-dimensional \mathbb{Q} -vector spaces this map is also surjective, so there exists $b \in R$ such that ab = 1. Thus R is a field.