Sample questions for algebra preliminary exam

Problem 1. Let A be a real 2×2 matrix such that $\binom{1}{2}$ is an eigenvector with eigenvalue 3 and such that $\binom{2}{1}$ is an eigenvector with eigenvalue -2 . Compute A^{-1} applied to $\binom{7}{8}$.
Problem 2. Determine whether the surface in \mathbb{R}^{3} defined by

$$
x^{2}+y^{2}+z^{2}-2 x y-2 x z-2 y z=1
$$

is a ellipsoid (an ellipse rotated about one of its axes) or a hyperboloid (a hyperbola rotated about one of its axes).
Problem 3. Let $n \in \mathbb{Z}_{\geq 1}$, and let V be the vector space of real polynomials of degree at most n. Consider the linear operator $T: V \rightarrow V$ defined by $T(f)(x)=f(1-x)$.
(a) Compute the determinant of T.
(b) Consider the bilinear form on V defined by $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) \mathrm{d} x$. Show that T is self-adjoint with respect to this inner product.
(c) For $n=2$, find a basis of V consisting of eigenvectors for T.

Problem 4. Let V be a finite-dimensional vector space and let $T: V \rightarrow V$ be a linear operator satisfying $T^{2}=T$.
(a) Show that the only possible eigenvalues of T are zero or one.
(b) If E_{λ} is the λ-eigenspace, show that $E_{0}=\operatorname{ker} T$ and E_{1} is the image of T.
(c) Show that T is diagonalizable.

Problem 5. Let V be a finite-dimensional vector space over a field F, let $V^{*}:=\operatorname{Hom}_{F}(V, F)$ be its dual space, and let $B: V \times V \rightarrow F$ be a nondegenerate bilinear form. Let $W \subseteq V$ be a subspace and

$$
W^{\perp}:=\{v \in V: B(v, w)=0 \text { for all } w \in W\}
$$

Show that $V / W^{\perp} \simeq W^{*}$.
Problem 6. Let $G:=\mathbb{Z} \times \mathbb{Z}$ and let $H:=\langle(2,3),(3,2)\rangle \subseteq G$ be the subgroup generated by $(2,3)$ and $(3,2)$. Show that G / H is a cyclic group and compute its order.

Problem 7. Let $H=\langle\sigma, \tau\rangle \subseteq S_{4}$ be the subgroup of the symmetric group S_{4} generated by the elements $\sigma:=(12)$ and $\tau:=(34)$.
(a) Compute the order of H.
(b) Show that H is not a normal subgroup of S_{4}.
(c) Compute the normalizer of H in S_{4}.

Problem 8. Let p be prime and let R be a ring (with 1) with $\# R=p^{2}$. Show R is commutative.
Problem 9. Indicate whether each of the statements below is true or false. If true, briefly justify the statement; if false, provide an explicit counterexample.
(a) Let $I \subsetneq \mathbb{Z}[x]$ be a proper ideal satisfying $\langle x\rangle \subseteq I \subsetneq \mathbb{Z}[x]$. Then I is a prime ideal.
(b) In a PID, nonzero prime ideals are maximal.
(c) Let $f(x) \in \mathbb{Q}[x]$ be irreducible. Then f is irreducible in $\mathbb{Q}[x, y]$.
(d) If $p \in \mathbb{Z}$ is a prime, $\left\langle x^{3}-p\right\rangle$ is a maximal ideal in $\mathbb{Z}[x]$.
(e) $26 x^{3}+x+64$ is irreducible in $\mathbb{Z}[x]$.

Problem 10. Let $R \subseteq \mathbb{C}$ be a subring which is finite-dimensional as a \mathbb{Q}-vector space. Show that R is a field.

