Sample solutions to questions for analysis preliminary exam

Problem 1. Let $A \subset \mathbb{R}$ be an open set and let $f: A \to \mathbb{R}$ be a function. Give three criteria $(\epsilon \cdot \delta, \text{ open sets, sequences})$ for f to be continuous on A. Show that two of these definitions are equivalent.

Solution. We claim that the following are equivalent:

- 1. For all $a \in A$ and for all $\epsilon > 0$, there exists $\delta > 0$ such that $|x a| < \delta$ and $x \in A$ implies $|f(x) f(a)| < \epsilon$;
- 2. For all open sets $V \subseteq \mathbb{R}$, the inverse image $f^{-1}(V) \subseteq A$ is open; and
- 3. For all $a_n \to a \in A$, we have $f(a_n) \to f(a) \in \mathbb{R}$.

First, (1) \Rightarrow (2). Let $V \subseteq \mathbb{R}$ be open, and let $a \in U := f^{-1}(V)$. Since V is open there is an open interval $B_{\epsilon}(f(a)) = (f(a) - \epsilon, f(a) + \epsilon) \subseteq V$ of f(a), so by (1) we have $f(B_{\delta}(a)) \subseteq B_{\epsilon}(f(a)) \subseteq V$; thus $B_{\delta}(a) \subseteq f^{-1}(B_{\epsilon}(f(a))) \subseteq U$ is an open neighborhood of a contained in U, so U is open.

Second, $(2) \Rightarrow (3)$. Let $\epsilon > 0$. By (2), we have $U := f^{-1}(B_{\epsilon}(a))$ open, so there exists an open neighborhood $B_{\delta}(a) \subseteq U$. Since $a_n \to a$, there exists $N \in \mathbb{Z}_{\geq 0}$ such that $a_n \in B_{\delta}(a)$ for $n \geq N$. Putting these together, we have $f(a_n) \in B_{\epsilon}(a)$ for $n \geq N$, which is (3).

Finally, $(3) \Rightarrow (1)$, which we prove by the contrapositive. By the negation of (1), we find that exists $a \in A$ and $\epsilon > 0$ such that for all $\delta = 1/n > 0$ (with $n \in \mathbb{Z}_{>0}$), there exists $a_n \in A$ such that $a_n \in B_{\epsilon}(\delta)$ but $|f(a_n) - f(a)| \ge \epsilon$. Thus the sequence $a_n \to a$, but $f(a_n) \not\to f(a)$, as desired.

Problem 2. Prove that for all x > 0 we have the inequality

$$\sin x > x - \frac{x^3}{6}.$$

Solution. By Taylor's theorem with Lagrange's form of the remainder, letting $f(x) = \sin x$ we have

$$\sin x = x + \frac{f^{(3)}(c)}{3!}x^3$$

for some 0 < c < x, where $f^{(3)}(x) = (\sin x)^{\prime\prime\prime} = -\cos x$ so $f^{(3)}(c) < 1$. The inequality follows.

To do it "by hand", let $f(x) := x - x^3/6$. Then $f'(x) = 1 - x^2/2$ and so f is decreasing for $x > \sqrt{2}$, hence for $x \ge 3$ we have $f(x) < f(3) = -3/2 < -1 < \sin x$. For 0 < x < 3, consider the Taylor series

$$\sin x - x = \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!};$$

it has terms of alternating sign, and since

$$\frac{x^{2n+3}}{(2n+3)!} = \frac{x^2}{(2n+3)(2n+2)} \frac{x^{2n+1}}{(2n+1)!} < \frac{x^{2n+1}}{(2n+1)!}$$

for $n \ge 1$, so we may apply the zig-zag criterion in the alternating series test: we have

$$\sin x - x = -\frac{x^3}{6} + \frac{x^5}{120} - \dots < -\frac{x^3}{6}$$

since the next term is positive.

Problem 3. Show that if the uniformly continuous functions $f_n \colon \mathbb{R} \to \mathbb{R}$ for $n \geq 1$ converge uniformly to $f \colon \mathbb{R} \to \mathbb{R}$, then f is uniformly continuous.

Solution. Let $\epsilon > 0$. Since $f_n \to f$ uniformly, there exists $N \in \mathbb{Z}_{\geq 1}$ such that for all $x \in \mathbb{R}$ we have $|f_N(x) - f(x)| < \epsilon/3$. Moreover, since the functions f_N are uniformly continuous, there exists $\delta > 0$ such that for all $x, y \in \mathbb{R}$ with $|x - y| < \delta$ we have $|f_N(x) - f_N(y)| < \epsilon/3$. Therefore

$$|f(x) - f(y)| \le |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$$

the first by uniform convergence at x, the second by uniform continuity of f_N , and the third by uniform convergence at y. Thus f is uniformly continuous.

Problem 4. Let (X, d) be a compact metric space and $f: X \to X$ be a continuous function such that if $x \neq y$, then d(f(x), f(y)) < d(x, y). Show that f has a unique fixed point.

Solution. Consider the function

$$g: X \to \mathbb{R}_{\geq 0}$$
$$x \mapsto g(x) = d(x, f(x)).$$

The map g is continuous, since d and f are continuous; since X is compact, by the extreme value theorem g attains its minimum at some point x. Let y := f(x). If $x \neq y$, then

$$g(y) = d(y, f(y)) = d(f(x), f(f(x))) < d(x, f(x)) = g(x);$$

this contradicts that the minimum of g is obtained at x. Thus x = y = f(x), so x is a fixed point. To show uniqueness, suppose $x' \in X$ has f(x') = x'. If $x' \neq x$, then d(x, x') = d(f(x), f(x')) < d(x, x'), a contradiction. So x' = x, and the fixed point is unique.

Problem 5. Let U be a connected, open subset of \mathbb{R}^n . Suppose $f: U \to \mathbb{R}$ is a function that is differentiable on U and that all partial derivatives $\frac{\partial f}{\partial x_i}(p) = 0$ vanish for all $p \in U$. Prove that f is constant.

Solution. We first prove this in the special case where U is open convex. Let $p, q \in U$ and define $g: [0,1] \to \mathbb{R}$ by g(t) := f(x(t)), with $x(t) = (x_i(t))_i := (1-t)p + tq \in U$ for $t \in [0,1]$ since U is convex. By the chain rule, for all $t \in (0,1)$ we have

$$g'(t) = \frac{\mathrm{d}g}{\mathrm{d}t}(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x(t))\frac{\mathrm{d}x_i}{\mathrm{d}t}(t) = 0$$

because all partial derivatives vanish at all points in U. By the mean value theorem, there exists $c \in (0, 1)$ such that

$$g(1) - g(0) = g'(c);$$

but g(1) = f(q) and g(0) = f(p), so

$$f(q) - f(p) = g'(c) = 0$$

and hence f(q) = f(p).

Finally, choose $p_0 \in U$, and let $W := \{p \in U : f(p) = f(p_0)\}$. Then W is closed (it is the inverse image of f(p)) and nonempty. It is also open: if $p \in W$, then in any open (convex) ball V of p in U, by the previous paragraph we have $f(q) = f(p) = f(p_0)$ for all $q \in V$, hence $V \subseteq W$. Since U is connected, we conclude that W = U and f is constant.

Problem 6. Let $f: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ be a monotone, decreasing function defined on the positive real numbers with

$$\int_0^\infty f(x)\,\mathrm{d}x < \infty.$$

Show that

$$\lim_{x \to \infty} x f(x) = 0.$$

Solution. Since f is monotone decreasing, we obtain a lower bound on the integral using a Riemann sum with right endpoints:

$$\sum_{n=1}^{\infty} nf(n) < \int_0^{\infty} f(x) \, \mathrm{d}x < \infty$$

Of course if a series of positive terms converges, then its terms tend to 0, so $\lim_{n\to\infty} nf(n) = 0$. Let $\epsilon > 0$. Then there exists $X \in \mathbb{R}_{>0}$ such that whenever $x \ge X$, we have $f(x) < \epsilon/2$. Similarly, there exists $N \in \mathbb{Z}_{\ge 0}$ such that whenever $n \ge N$ we have $nf(n) < \epsilon/2$. Thus whenever $x \ge \max(N, X)$, letting $n := |x| \le x$ we have

$$xf(x) \le xf(n) = (x - n + n)f(n) \le f(n) + nf(n) < \epsilon/2 + \epsilon/2 < \epsilon.$$

Thus $\lim_{x\to\infty} xf(x) = 0.$

Problem 7. Suppose that X and Y are topological spaces with Y compact, and give $X \times Y$ the product topology. Show that the projection map $\pi: X \times Y \to X$ is a closed map.

Solution. Let $Z \subseteq X \times Y$ be closed; we show that $X \setminus \pi(Z)$ is open. Let $x \in X$ have $x \notin \pi(Z)$. Then $\{x\} \times Y$ is contained in $X \times Y \setminus Z$. By the tube lemma, one can find an open set $V \subseteq X$ containing x such that $V \times Y \subseteq X \times Y \setminus Z$. Thus $V \subseteq X$ is in the complement of $\pi(Z)$, showing $X \setminus \pi(Z)$ is open.

Here is a direct proof. Again, let $Z \subseteq X \times Y$ be closed, and let $x \notin \pi(Z)$. Then $(x, y) \in (X \times Y) \setminus Z$ for all $y \in Y$. Since $(X \times Y) \setminus Z$ is open, for each $y \in Y$ there exists an open subset $U_y \times V_y \subseteq (X \times Y) \setminus Z$ containing (x, y). The collection of open sets $\{V_y\}_{y \in Y} \subseteq Y$ form an open cover. Since Y is compact, this reduces to an open cover with $Y = \bigcup_{i=1}^r V_{y_i}$. Let $U := \bigcap_{i=1}^k U_{y_i}$. Then $x \in U$. And if $x' \in U$, then

$$\{x'\} \times \{V_{y_i}\} \subseteq U_{y_i} \times V_{y_i} \subseteq (X \times Y) \smallsetminus Z$$

for all *i*. Thus $\{x'\} \times Y \subseteq (X \times Y) \setminus Z$, and so $U \subseteq X \setminus \pi(Z)$ is open, as claimed.

Problem 8. Give an example of a Hausdoff topological space X and an equivalence relation \sim on X so that the topological space $Y = X/\sim$ is not Hausdorff.

Solution. We use the line with a doubled origin. Let $X := \{(x,i) \in \mathbb{R} : i \in \{1,2\}\}$. Define an equivalence relation on X by $(x,i) \sim (x',i')$ when $x = x' \neq 0$ and $i \neq i'$. It is straightforward to check that this is an equivalence relation, and the quotient $Y := X/\sim$ has equivalence classes $[(0,1)] = \{(0,1)\}, [(0,2)] = \{(0,2)\}, \text{ and } [(x,1)] = [(x,2)] = \{(x,1),(x,2)\}$ for $x \neq 0$. The neighborhoods of (0,i) are open intervals in $\mathbb{R} \times \{i\}$ containing 0, so any two neighborhoods of [(0,1)] and [(0,2)] intersect.

Problem 9. Prove or disprove: the set \mathbb{Q} of rational numbers is the intersection of a countable family of open subsets of \mathbb{R} .

Solution. The statement is false. We have

$$\mathbb{R} \smallsetminus \mathbb{Q} = \bigcap_{a \in \mathbb{Q}} (\mathbb{R} \smallsetminus \{a\}).$$

Suppose that $\mathbb{Q} = \bigcap_n G_n$ with each $G_n \subseteq \mathbb{R}$ open. Since \mathbb{Q} is dense in \mathbb{R} , and $\mathbb{Q} \subseteq G_n$ we have G_n open dense in \mathbb{R} for all n. Thus

$$\emptyset = \mathbb{Q} \cap (\mathbb{R} \smallsetminus \mathbb{Q})$$

is a countable intersection of open dense sets. This contradicts the Baire category theorem, which says that any countable intersection of open dense sets is dense.