Sample solutions to questions for analysis preliminary exam

Problem 1. Let $A \subset \mathbb{R}$ be an open set and let $f: A \rightarrow \mathbb{R}$ be a function. Give three criteria ($\epsilon-\delta$, open sets, sequences) for f to be continuous on A. Show that two of these definitions are equivalent.

Solution. We claim that the following are equivalent:

1. For all $a \in A$ and for all $\epsilon>0$, there exists $\delta>0$ such that $|x-a|<\delta$ and $x \in A$ implies $|f(x)-f(a)|<\epsilon ;$
2. For all open sets $V \subseteq \mathbb{R}$, the inverse image $f^{-1}(V) \subseteq A$ is open; and
3. For all $a_{n} \rightarrow a \in A$, we have $f\left(a_{n}\right) \rightarrow f(a) \in \mathbb{R}$.

First, $(1) \Rightarrow(2)$. Let $V \subseteq \mathbb{R}$ be open, and let $a \in U:=f^{-1}(V)$. Since V is open there is an open interval $B_{\epsilon}(f(a))=(f(a)-\epsilon, f(a)+\epsilon) \subseteq V$ of $f(a)$, so by (1) we have $f\left(B_{\delta}(a)\right) \subseteq B_{\epsilon}(f(a)) \subseteq V$; thus $B_{\delta}(a) \subseteq f^{-1}\left(B_{\epsilon}(f(a))\right) \subseteq U$ is an open neighborhood of a contained in U, so U is open.

Second, (2) \Rightarrow (3). Let $\epsilon>0$. By (2), we have $U:=f^{-1}\left(B_{\epsilon}(a)\right)$ open, so there exists an open neighborhood $B_{\delta}(a) \subseteq U$. Since $a_{n} \rightarrow a$, there exists $N \in \mathbb{Z}_{\geq 0}$ such that $a_{n} \in B_{\delta}(a)$ for $n \geq N$. Putting these together, we have $f\left(a_{n}\right) \in B_{\epsilon}(a)$ for $n \geq N$, which is (3).

Finally, $(3) \Rightarrow(1)$, which we prove by the contrapositive. By the negation of (1), we find that exists $a \in A$ and $\epsilon>0$ such that for all $\delta=1 / n>0$ (with $n \in \mathbb{Z}_{>0}$), there exists $a_{n} \in A$ such that $a_{n} \in B_{\epsilon}(\delta)$ but $\left|f\left(a_{n}\right)-f(a)\right| \geq \epsilon$. Thus the sequence $a_{n} \rightarrow a$, but $f\left(a_{n}\right) \nrightarrow f(a)$, as desired.
Problem 2. Prove that for all $x>0$ we have the inequality

$$
\sin x>x-\frac{x^{3}}{6}
$$

Solution. By Taylor's theorem with Lagrange's form of the remainder, letting $f(x)=\sin x$ we have

$$
\sin x=x+\frac{f^{(3)}(c)}{3!} x^{3}
$$

for some $0<c<x$, where $f^{(3)}(x)=(\sin x)^{\prime \prime \prime}=-\cos x$ so $f^{(3)}(c)<1$. The inequality follows.
To do it "by hand", let $f(x):=x-x^{3} / 6$. Then $f^{\prime}(x)=1-x^{2} / 2$ and so f is decreasing for $x>\sqrt{2}$, hence for $x \geq 3$ we have $f(x)<f(3)=-3 / 2<-1<\sin x$. For $0<x<3$, consider the Taylor series

$$
\sin x-x=\sum_{n=1}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!}
$$

it has terms of alternating sign, and since

$$
\frac{x^{2 n+3}}{(2 n+3)!}=\frac{x^{2}}{(2 n+3)(2 n+2)} \frac{x^{2 n+1}}{(2 n+1)!}<\frac{x^{2 n+1}}{(2 n+1)!}
$$

for $n \geq 1$, so we may apply the zig-zag criterion in the alternating series test: we have

$$
\sin x-x=-\frac{x^{3}}{6}+\frac{x^{5}}{120}-\cdots<-\frac{x^{3}}{6}
$$

since the next term is positive.

Problem 3. Show that if the uniformly continuous functions $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ for $n \geq 1$ converge uniformly to $f: \mathbb{R} \rightarrow \mathbb{R}$, then f is uniformly continuous.

Solution. Let $\epsilon>0$. Since $f_{n} \rightarrow f$ uniformly, there exists $N \in \mathbb{Z}_{\geq 1}$ such that for all $x \in \mathbb{R}$ we have $\left|f_{N}(x)-f(x)\right|<\epsilon / 3$. Moreover, since the functions f_{N} are uniformly continuous, there exists $\delta>0$ such that for all $x, y \in \mathbb{R}$ with $|x-y|<\delta$ we have $\left|f_{N}(x)-f_{N}(y)\right|<\epsilon / 3$. Therefore

$$
|f(x)-f(y)| \leq\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-f_{n}(y)\right|+\left|f_{n}(y)-f(y)\right|<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
$$

the first by uniform convergence at x, the second by uniform continuity of f_{N}, and the third by uniform convergence at y. Thus f is uniformly continuous.
Problem 4. Let (X, d) be a compact metric space and $f: X \rightarrow X$ be a continuous function such that if $x \neq y$, then $d(f(x), f(y))<d(x, y)$. Show that f has a unique fixed point.

Solution. Consider the function

$$
\begin{aligned}
g: X & \rightarrow \mathbb{R}_{\geq 0} \\
x & \mapsto g(x)=d(x, f(x))
\end{aligned}
$$

The map g is continuous, since d and f are continuous; since X is compact, by the extreme value theorem g attains its minimum at some point x. Let $y:=f(x)$. If $x \neq y$, then

$$
g(y)=d(y, f(y))=d(f(x), f(f(x)))<d(x, f(x))=g(x)
$$

this contradicts that the minimum of g is obtained at x. Thus $x=y=f(x)$, so x is a fixed point. To show uniqueness, suppose $x^{\prime} \in X$ has $f\left(x^{\prime}\right)=x^{\prime}$. If $x^{\prime} \neq x$, then $d\left(x, x^{\prime}\right)=d\left(f(x), f\left(x^{\prime}\right)\right)<d\left(x, x^{\prime}\right)$, a contradiction. So $x^{\prime}=x$, and the fixed point is unique.
Problem 5. Let U be a connected, open subset of \mathbb{R}^{n}. Suppose $f: U \rightarrow \mathbb{R}$ is a function that is differentiable on U and that all partial derivatives $\frac{\partial f}{\partial x_{i}}(p)=0$ vanish for all $p \in U$. Prove that f is constant.
Solution. We first prove this in the special case where U is open convex. Let $p, q \in U$ and define $g:[0,1] \rightarrow \mathbb{R}$ by $g(t):=f(x(t))$, with $x(t)=\left(x_{i}(t)\right)_{i}:=(1-t) p+t q \in U$ for $t \in[0,1]$ since U is convex. By the chain rule, for all $t \in(0,1)$ we have

$$
g^{\prime}(t)=\frac{\mathrm{d} g}{\mathrm{~d} t}(t)=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}(x(t)) \frac{\mathrm{d} x_{i}}{\mathrm{~d} t}(t)=0
$$

because all partial derivatives vanish at all points in U. By the mean value theorem, there exists $c \in(0,1)$ such that

$$
g(1)-g(0)=g^{\prime}(c)
$$

but $g(1)=f(q)$ and $g(0)=f(p)$, so

$$
f(q)-f(p)=g^{\prime}(c)=0
$$

and hence $f(q)=f(p)$.
Finally, choose $p_{0} \in U$, and let $W:=\left\{p \in U: f(p)=f\left(p_{0}\right)\right\}$. Then W is closed (it is the inverse image of $f(p)$) and nonempty. It is also open: if $p \in W$, then in any open (convex) ball V of p in U, by the previous paragraph we have $f(q)=f(p)=f\left(p_{0}\right)$ for all $q \in V$, hence $V \subseteq W$. Since U is connected, we conclude that $W=U$ and f is constant.

Problem 6. Let $f: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{>0}$ be a monotone, decreasing function defined on the positive real numbers with

$$
\int_{0}^{\infty} f(x) \mathrm{d} x<\infty
$$

Show that

$$
\lim _{x \rightarrow \infty} x f(x)=0
$$

Solution. Since f is monotone decreasing, we obtain a lower bound on the integral using a Riemann sum with right endpoints:

$$
\sum_{n=1}^{\infty} n f(n)<\int_{0}^{\infty} f(x) \mathrm{d} x<\infty
$$

Of course if a series of positive terms converges, then its terms tend to 0 , so $\lim _{n \rightarrow \infty} n f(n)=0$. Let $\epsilon>0$. Then there exists $X \in \mathbb{R}_{>0}$ such that whenever $x \geq X$, we have $f(x)<\epsilon / 2$. Similarly, there exists $N \in \mathbb{Z}_{\geq 0}$ such that whenever $n \geq N$ we have $n f(n)<\epsilon / 2$. Thus whenever $x \geq \max (N, X)$, letting $n:=\lfloor x\rfloor \leq x$ we have

$$
x f(x) \leq x f(n)=(x-n+n) f(n) \leq f(n)+n f(n)<\epsilon / 2+\epsilon / 2<\epsilon
$$

Thus $\lim _{x \rightarrow \infty} x f(x)=0$.
Problem 7. Suppose that X and Y are topological spaces with Y compact, and give $X \times Y$ the product topology. Show that the projection map $\pi: X \times Y \rightarrow X$ is a closed map.
Solution. Let $Z \subseteq X \times Y$ be closed; we show that $X \backslash \pi(Z)$ is open. Let $x \in X$ have $x \notin \pi(Z)$. Then $\{x\} \times Y$ is contained in $X \times Y \backslash Z$. By the tube lemma, one can find an open set $V \subseteq X$ containing x such that $V \times Y \subseteq X \times Y \backslash Z$. Thus $V \subseteq X$ is in the complement of $\pi(Z)$, showing $X \backslash \pi(Z)$ is open.

Here is a direct proof. Again, let $Z \subseteq X \times Y$ be closed, and let $x \notin \pi(Z)$. Then $(x, y) \in$ $(X \times Y) \backslash Z$ for all $y \in Y$. Since $(X \times Y) \backslash Z$ is open, for each $y \in Y$ there exists an open subset $U_{y} \times V_{y} \subseteq(X \times Y) \backslash Z$ containing (x, y). The collection of open sets $\left\{V_{y}\right\}_{y \in Y} \subseteq Y$ form an open cover. Since Y is compact, this reduces to an open cover with $Y=\bigcup_{i=1}^{r} V_{y_{i}}$. Let $U:=\bigcap_{i=1}^{k} U_{y_{i}}$. Then $x \in U$. And if $x^{\prime} \in U$, then

$$
\left\{x^{\prime}\right\} \times\left\{V_{y_{i}}\right\} \subseteq U_{y_{i}} \times V_{y_{i}} \subseteq(X \times Y) \backslash Z
$$

for all i. Thus $\left\{x^{\prime}\right\} \times Y \subseteq(X \times Y) \backslash Z$, and so $U \subseteq X \backslash \pi(Z)$ is open, as claimed.
Problem 8. Give an example of a Hausdoff topological space X and an equivalence relation \sim on X so that the topological space $Y=X / \sim$ is not Hausdorff.

Solution. We use the line with a doubled origin. Let $X:=\{(x, i) \in \mathbb{R}: i \in\{1,2\}\}$. Define an equivalence relation on X by $(x, i) \sim\left(x^{\prime}, i^{\prime}\right)$ when $x=x^{\prime} \neq 0$ and $i \neq i^{\prime}$. It is straightforward to check that this is an equivalence relation, and the quotient $Y:=X / \sim$ has equivalence classes $[(0,1)]=\{(0,1)\},[(0,2)]=\{(0,2)\}$, and $[(x, 1)]=[(x, 2)]=\{(x, 1),(x, 2)\}$ for $x \neq 0$. The neighborhoods of $(0, i)$ are open intervals in $\mathbb{R} \times\{i\}$ containing 0 , so any two neighborhoods of $[(0,1)]$ and $[(0,2)]$ intersect.
Problem 9. Prove or disprove: the set \mathbb{Q} of rational numbers is the intersection of a countable family of open subsets of \mathbb{R}.

Solution. The statement is false. We have

$$
\mathbb{R} \backslash \mathbb{Q}=\bigcap_{a \in \mathbb{Q}}(\mathbb{R} \backslash\{a\}) .
$$

Suppose that $\mathbb{Q}=\bigcap_{n} G_{n}$ with each $G_{n} \subseteq \mathbb{R}$ open. Since \mathbb{Q} is dense in \mathbb{R}, and $\mathbb{Q} \subseteq G_{n}$ we have G_{n} open dense in \mathbb{R} for all n. Thus

$$
\emptyset=\mathbb{Q} \cap(\mathbb{R} \backslash \mathbb{Q})
$$

is a countable intersection of open dense sets. This contradicts the Baire category theorem, which says that any countable intersection of open dense sets is dense.

