
Sample solutions to questions for analysis preliminary exam

Problem 1. Let A ⊂ R be an open set and let f : A → R be a function. Give three criteria
(ε-δ, open sets, sequences) for f to be continuous on A. Show that two of these definitions are
equivalent.

Solution. We claim that the following are equivalent:

1. For all a ∈ A and for all ε > 0, there exists δ > 0 such that |x − a| < δ and x ∈ A implies
|f(x)− f(a)| < ε;

2. For all open sets V ⊆ R, the inverse image f−1(V ) ⊆ A is open; and

3. For all an → a ∈ A, we have f(an)→ f(a) ∈ R.

First, (1)⇒ (2). Let V ⊆ R be open, and let a ∈ U := f−1(V ). Since V is open there is an open
interval Bε(f(a)) = (f(a)− ε, f(a) + ε) ⊆ V of f(a), so by (1) we have f(Bδ(a)) ⊆ Bε(f(a)) ⊆ V ;
thus Bδ(a) ⊆ f−1(Bε(f(a))) ⊆ U is an open neighborhood of a contained in U , so U is open.

Second, (2) ⇒ (3). Let ε > 0. By (2), we have U := f−1(Bε(a)) open, so there exists an open
neighborhood Bδ(a) ⊆ U . Since an → a, there exists N ∈ Z≥0 such that an ∈ Bδ(a) for n ≥ N .
Putting these together, we have f(an) ∈ Bε(a) for n ≥ N , which is (3).

Finally, (3) ⇒ (1), which we prove by the contrapositive. By the negation of (1), we find that
exists a ∈ A and ε > 0 such that for all δ = 1/n > 0 (with n ∈ Z>0), there exists an ∈ A such that
an ∈ Bε(δ) but |f(an)− f(a)| ≥ ε. Thus the sequence an → a, but f(an) 6→ f(a), as desired.

Problem 2. Prove that for all x > 0 we have the inequality

sinx > x− x3

6
.

Solution. By Taylor’s theorem with Lagrange’s form of the remainder, letting f(x) = sinx we have

sinx = x+
f (3)(c)

3!
x3

for some 0 < c < x, where f (3)(x) = (sinx)′′′ = − cosx so f (3)(c) < 1. The inequality follows.
To do it “by hand”, let f(x) := x − x3/6. Then f ′(x) = 1 − x2/2 and so f is decreasing for

x >
√

2, hence for x ≥ 3 we have f(x) < f(3) = −3/2 < −1 < sinx. For 0 < x < 3, consider the
Taylor series

sinx− x =
∞∑
n=1

(−1)n
x2n+1

(2n+ 1)!
;

it has terms of alternating sign, and since

x2n+3

(2n+ 3)!
=

x2

(2n+ 3)(2n+ 2)

x2n+1

(2n+ 1)!
<

x2n+1

(2n+ 1)!

for n ≥ 1, so we may apply the zig-zag criterion in the alternating series test: we have

sinx− x = −x
3

6
+

x5

120
− · · · < −x

3

6

since the next term is positive.
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Problem 3. Show that if the uniformly continuous functions fn : R → R for n ≥ 1 converge
uniformly to f : R→ R, then f is uniformly continuous.

Solution. Let ε > 0. Since fn → f uniformly, there exists N ∈ Z≥1 such that for all x ∈ R we
have |fN (x)− f(x)| < ε/3. Moreover, since the functions fN are uniformly continuous, there exists
δ > 0 such that for all x, y ∈ R with |x− y| < δ we have |fN (x)− fN (y)| < ε/3. Therefore

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)| < ε

3
+
ε

3
+
ε

3
= ε

the first by uniform convergence at x, the second by uniform continuity of fN , and the third by
uniform convergence at y. Thus f is uniformly continuous.

Problem 4. Let (X, d) be a compact metric space and f : X → X be a continuous function such
that if x 6= y, then d(f(x), f(y)) < d(x, y). Show that f has a unique fixed point.

Solution. Consider the function

g : X → R≥0
x 7→ g(x) = d(x, f(x)).

The map g is continuous, since d and f are continuous; since X is compact, by the extreme value
theorem g attains its minimum at some point x. Let y := f(x). If x 6= y, then

g(y) = d(y, f(y)) = d(f(x), f(f(x))) < d(x, f(x)) = g(x);

this contradicts that the minimum of g is obtained at x. Thus x = y = f(x), so x is a fixed point. To
show uniqueness, suppose x′ ∈ X has f(x′) = x′. If x′ 6= x, then d(x, x′) = d(f(x), f(x′)) < d(x, x′),
a contradiction. So x′ = x, and the fixed point is unique.

Problem 5. Let U be a connected, open subset of Rn. Suppose f : U → R is a function that is

differentiable on U and that all partial derivatives
∂f

∂xi
(p) = 0 vanish for all p ∈ U . Prove that f is

constant.

Solution. We first prove this in the special case where U is open convex. Let p, q ∈ U and define
g : [0, 1] → R by g(t) := f(x(t)), with x(t) = (xi(t))i := (1 − t)p + tq ∈ U for t ∈ [0, 1] since U is
convex. By the chain rule, for all t ∈ (0, 1) we have

g′(t) =
dg

dt
(t) =

n∑
i=1

∂f

∂xi
(x(t))

dxi
dt

(t) = 0

because all partial derivatives vanish at all points in U . By the mean value theorem, there exists
c ∈ (0, 1) such that

g(1)− g(0) = g′(c);

but g(1) = f(q) and g(0) = f(p), so

f(q)− f(p) = g′(c) = 0

and hence f(q) = f(p).
Finally, choose p0 ∈ U , and let W := {p ∈ U : f(p) = f(p0)}. Then W is closed (it is the

inverse image of f(p)) and nonempty. It is also open: if p ∈ W , then in any open (convex) ball V
of p in U , by the previous paragraph we have f(q) = f(p) = f(p0) for all q ∈ V , hence V ⊆ W .
Since U is connected, we conclude that W = U and f is constant.
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Problem 6. Let f : R>0 → R>0 be a monotone, decreasing function defined on the positive real
numbers with ∫ ∞

0
f(x) dx <∞.

Show that
lim
x→∞

xf(x) = 0.

Solution. Since f is monotone decreasing, we obtain a lower bound on the integral using a Riemann
sum with right endpoints:

∞∑
n=1

nf(n) <

∫ ∞
0

f(x) dx <∞.

Of course if a series of positive terms converges, then its terms tend to 0, so limn→∞ nf(n) = 0. Let
ε > 0. Then there exists X ∈ R>0 such that whenever x ≥ X, we have f(x) < ε/2. Similarly, there
exists N ∈ Z≥0 such that whenever n ≥ N we have nf(n) < ε/2. Thus whenever x ≥ max(N,X),
letting n := bxc ≤ x we have

xf(x) ≤ xf(n) = (x− n+ n)f(n) ≤ f(n) + nf(n) < ε/2 + ε/2 < ε.

Thus limx→∞ xf(x) = 0.

Problem 7. Suppose that X and Y are topological spaces with Y compact, and give X × Y the
product topology. Show that the projection map π : X × Y → X is a closed map.

Solution. Let Z ⊆ X × Y be closed; we show that X r π(Z) is open. Let x ∈ X have x 6∈ π(Z).
Then {x} × Y is contained in X × Y r Z. By the tube lemma, one can find an open set V ⊆ X
containing x such that V × Y ⊆ X × Y r Z. Thus V ⊆ X is in the complement of π(Z), showing
X r π(Z) is open.

Here is a direct proof. Again, let Z ⊆ X × Y be closed, and let x 6∈ π(Z). Then (x, y) ∈
(X × Y ) r Z for all y ∈ Y . Since (X × Y ) r Z is open, for each y ∈ Y there exists an open subset
Uy × Vy ⊆ (X × Y ) r Z containing (x, y). The collection of open sets {Vy}y∈Y ⊆ Y form an open

cover. Since Y is compact, this reduces to an open cover with Y =
⋃r
i=1 Vyi . Let U :=

⋂k
i=1 Uyi .

Then x ∈ U . And if x′ ∈ U , then

{x′} × {Vyi} ⊆ Uyi × Vyi ⊆ (X × Y ) r Z

for all i. Thus {x′} × Y ⊆ (X × Y ) r Z, and so U ⊆ X r π(Z) is open, as claimed.

Problem 8. Give an example of a Hausdoff topological space X and an equivalence relation ∼ on
X so that the topological space Y = X/ ∼ is not Hausdorff.

Solution. We use the line with a doubled origin. Let X := {(x, i) ∈ R : i ∈ {1, 2}}. Define an
equivalence relation on X by (x, i) ∼ (x′, i′) when x = x′ 6= 0 and i 6= i′. It is straightforward
to check that this is an equivalence relation, and the quotient Y := X/∼ has equivalence classes
[(0, 1)] = {(0, 1)}, [(0, 2)] = {(0, 2)}, and [(x, 1)] = [(x, 2)] = {(x, 1), (x, 2)} for x 6= 0. The
neighborhoods of (0, i) are open intervals in R × {i} containing 0, so any two neighborhoods of
[(0, 1)] and [(0, 2)] intersect.

Problem 9. Prove or disprove: the set Q of rational numbers is the intersection of a countable
family of open subsets of R.
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Solution. The statement is false. We have

RrQ =
⋂
a∈Q

(Rr {a}).

Suppose that Q =
⋂
nGn with each Gn ⊆ R open. Since Q is dense in R, and Q ⊆ Gn we have Gn

open dense in R for all n. Thus
∅ = Q ∩ (RrQ)

is a countable intersection of open dense sets. This contradicts the Baire category theorem, which
says that any countable intersection of open dense sets is dense.
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