Lecture 8 Activity: Product and Quotient Rules

Ben Logsdon
Math 3, Fall 2023

September 27, 2023

1. Compute derivatives of the following functions.
$1.1 x^{2} e^{x}$.
$1.2 \frac{x-1}{x+1}$.
$1.3 \frac{x^{2}+x-1}{x^{3}}$.
$1.4 \frac{x e^{x}}{x^{2}+1}$.
2. What is the tangent line to $\frac{x-1}{x+1}$ at $x=1$?
3. Suppose $f(1)=3, f^{\prime}(1)=-1, g(1)=5, g^{\prime}(1)=2$, and $h^{\prime}(1)=3$. Which of the following can be determined from this information, and why?
$3.1(f+g)^{\prime}(1)$ (the derivative of $f(x)+g(x)$ at $x=1$).
$3.2(g-h)^{\prime}(1)$ (the derivative of $g(x)-h(x)$ at $x=1$).
$3.3(f g)^{\prime}(1)$ (the derivative of $f(x) g(x)$ at $\left.x=1\right)$.
$3.4(f h)^{\prime}(1)$ (the derivative of $f(x) h(x)$ at $x=1$).
4. Find a function $f(x)$ such that $f^{\prime}(x)=x e^{x}$. (Hint: It looks like $a x e^{x}+b e^{x}$ for some constants a and b.)
5. Challenge Problem: Use the limit definition of the derivative to prove the product rule. (Hint: You'll start with $f(x+h) g(x+h)-f(x) g(x)$ in the numerator of the limit. Use algebra to change this to

$$
(f(x+h)-f(x)) g(x)+f(x)(g(x+h)-g(x)) .)
$$

