Lecture 9 Activity: Trigonometric Derivatives,
 Chain Rule Preview

Ben Logsdon
Math 3, Fall 2023

September 29, 2023

1. Compute derivatives of the following functions.
$1.1 \csc x=\frac{1}{\sin x}$
$1.2 \sec x=\frac{1}{\operatorname{sen} x}$
$1.3 \cot x=\frac{\cos x}{\sin x}$
$1.4 e^{x} \sin x$
$1.5 \frac{\sin x \cos x}{x^{2}+2 x+1}$
2. Let $f(x)=a \cos x+b \sin x$.
2.1 Suppose that $f(0)=3$ and $f(\pi / 2)=-2$. What are a and b ?
2.2 Suppose that $f(0)=-1$ and $f^{\prime}(\pi)=4$. What are a and b ?
2.3 Suppose that $f^{\prime \prime}(\pi)=0$ and $f^{\prime \prime \prime}(2 \pi)=3$. What are a and b ?
3. For each of the functions below, determine whether or not you would use the chain rule to take the derivative of the function. If it is, what is u ?
$3.1 \sin \left(e^{x}\right)$
$3.2 e^{x} \sin x$
$3.3 \cos (1 / x)$
$3.4 \frac{1}{x^{2}}$
$3.55 x+e^{\left(x^{2}\right)}$
$3.6 \sin \cos x$

Solution 1.1

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{\sin x}\right) & =\frac{\sin x \cdot \frac{d}{d x}(1)-1 \cdot \frac{d}{d x}(\sin x)}{\sin ^{2} x} \\
& =\frac{\sin x \cdot 0-1 \cdot \cos x}{\sin ^{2} x} \\
& =\frac{-\cos x}{\sin ^{2} x}
\end{aligned}
$$

Solution 1.2

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{1}{\cos x}\right) & =\frac{\cos x \cdot \frac{d}{d x}(1)-1 \cdot \frac{d}{d x}(\cos x)}{\cos ^{2} x} \\
& =\frac{\cos x \cdot 0-1 \cdot(-\sin x)}{\cos ^{2} x} \\
& =\frac{\sin x}{\cos ^{2} x}
\end{aligned}
$$

Solution 1.3

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{\cos x}{\sin x}\right) & =\frac{\sin x \cdot \frac{d}{d x}(\cos x)-\cos x \cdot \frac{d}{d x}(\sin x)}{\sin ^{2} x} \\
& =\frac{\sin x \cdot(-\sin x)-\cos x \cdot \cos x}{\sin ^{2} x} \\
& =\frac{-\left(\sin ^{2} x+\cos ^{2} x\right)}{\cos ^{2} x} \\
& =-\frac{1}{\cos ^{2} x}
\end{aligned}
$$

The last line is from the identity $\sin ^{2} x+\cos ^{2} x=1$.

Solution 1.4

This will use the product rule.

$$
\begin{aligned}
\frac{d}{d x}\left(e^{x} \sin x\right) & =e^{x} \frac{d}{d x}(\sin x)+\frac{d}{d x}\left(e^{x}\right) \sin x \\
& =e^{x} \cos x+e^{x} \sin x .
\end{aligned}
$$

Solution 1.5

For complicated functions like this, it's often helpful to zoom on part of it at the beginning. Let's start by taking the derivative of the numerator.

$$
\begin{aligned}
\frac{d}{d x}(\sin x \cos x) & =\sin x \frac{d}{d x}(\cos x)+\frac{d}{d x}(\sin x) \cos x \\
& =\sin x(-\sin x)+\cos x \cos x \\
& =-\sin ^{2} x+\cos ^{2} x \\
& =\cos ^{2} x-\sin ^{2} x
\end{aligned}
$$

Now let's look at the whole thing.

$$
\begin{aligned}
& \frac{d}{d x}\left(\frac{\sin x \cos x}{x^{2}+2 x+1}\right) \\
& =\frac{\left(x^{2}+2 x+1\right) \cdot \frac{d}{d x}(\sin x \cos x)-\sin x \cos x \cdot \frac{d}{d x}\left(x^{2}+2 x+1\right)}{\left(x^{2}+2 x+1\right)^{2}} \\
& =\frac{\left(x^{2}+2 x+1\right) \cdot\left(\cos ^{2} x-\sin ^{2} x\right)-\sin x \cos x \cdot(2 x+2)}{\left(x^{2}+2 x+1\right)^{2}} .
\end{aligned}
$$

There isn't much we can do to simplify this, so we'll just leave it like that.

Solution 2.1

For all of these, it will be useful to calculate $f^{\prime}, f^{\prime \prime}$, and $f^{\prime \prime \prime}$ first.

$$
\begin{gathered}
f^{\prime}(x)=-a \sin x+b \cos x \\
f^{\prime \prime}(x)=-a \cos x-b \sin x \\
f^{\prime \prime \prime}(x)=a \sin x-b \cos x
\end{gathered}
$$

We know that $f(0)=3$ and $f(\pi / 2)=-2$. Since $f(0)=a \cos 0+b \sin 0=a \cdot 1+b \cdot 0=a$ and $f(\pi / 2)=a \cos \frac{\pi}{2}+b \sin \frac{\pi}{2}=a \cdot 0+b \cdot 1=b$, we know that $a=3$ and $b=-2$.

Solution 2.2

We know that $f(0)=-1$ and $f^{\prime}(\pi)=4$. Since $f(0)=a \cos 0+b \sin 0=a \cdot 1+b \cdot 0=a$, we know that $a=-1$. Since $f^{\prime}(\pi)=-a \sin \pi+b \cos \pi=-a \cdot 0+b \cdot(-1)=-b$, we know that $-b=4$, so $b=-4$.

Solution 2.3

We know that $f^{\prime \prime}(\pi)=0$ and $f^{\prime \prime \prime}(2 \pi)=3$. Since $f^{\prime \prime}(\pi)=-a \cos \pi-b \sin \pi=-a \cdot(-1)-b \cdot 0=a$, we know that $a=0$. Since $f^{\prime \prime \prime}(2 \pi)=a \sin 2 \pi-b \cos 2 \pi=a \cdot 0-b \cdot 1=-b$, we know that $-b=3$, so $b=-3$.

Solution 3

1. $\frac{d}{d x}\left(\sin \left(e^{x}\right)\right)$ requires the chain rule. The inside is $u=e^{x}$.
2. $\frac{d}{d x}\left(e^{x} \sin x\right)$ does not require the chain rule-only the product rule.
3. $\frac{d}{d x}(\cos (1 / x))$ requires the chain rule. The inside is $u=1 / x$.
4. $\frac{d}{d x}\left(\frac{1}{x^{2}}\right)$ does not require the chain rule-we can just use the power rule.
5. $\frac{d}{d x}\left(5 x+e^{\left(x^{2}\right)}\right)$ requires the chain rule. The inside is x^{2}.
6. $\frac{d}{d x}(\sin \cos x)$ requires the chain rule. The inside is $u=\cos x$.
