Lecture 10 Activity: Chain Rule

Ben Logsdon
Math 3, Fall 2023

October 2, 2023

1. Use the chain rule (and other rules) to calculate derivatives of the following functions.
```
    1.1 e}\mp@subsup{e}{}{\operatorname{cos}x
    1.2 ecx
    1.3 sin(cx)
    1.4 \operatorname{sin}(\mp@subsup{e}{}{x})
    1.5(\operatorname{sin}(x)\mp@subsup{)}{}{1000}
    1.6 \frac{\operatorname{sin}(\operatorname{cos}x)}{\mp@subsup{x}{}{2}}
```

2. Take the derivatives of the functions below. Which ones require the chain rule?
$2.1 \frac{x^{2}-3 x+1}{e^{\left(x^{2}\right)}}$
$2.2 \sin \left(\frac{1}{x}\right)$
$2.3 \frac{\sin ^{2} x-\cos ^{2} x}{x^{2}}$
3. What is the derivative of $\sin \left(\cos \left(e^{x}\right)\right)$? (Hint: This will require using the chain rule twice. First, use the chain rule to differentiate $\cos \left(e^{x}\right)$; then look at the whole thing.)

Solution 1.1

Let $u=\cos x$. Then

$$
\frac{d f}{d u}=\frac{d}{d u}\left(e^{u}\right)=e^{u}=e^{\cos x}
$$

and

$$
\frac{d u}{d x}=\frac{d}{d x}(\cos x)=-\sin x
$$

So

$$
\frac{d f}{d x}=\frac{d f}{d u} \cdot \frac{d u}{d x}=e^{\cos x}(-\sin x) .
$$

Solution 1.2

Let $u=c x$. Then

$$
\frac{d f}{d u}=\frac{d}{d u}\left(e^{u}\right)=e^{u}=e^{c x}
$$

and

$$
\frac{d u}{d x}=\frac{d}{d x}(c x)=c
$$

So

$$
\frac{d f}{d x}=\frac{d f}{d u} \cdot \frac{d u}{d x}=e^{c x} \cdot c=c e^{c x} .
$$

Solution 1.3

Let $u=c x$. Then

$$
\frac{d f}{d u}=\frac{d}{d u}(\sin u)=\cos u=\cos (c x)
$$

and

$$
\frac{d u}{d x}=\frac{d}{d x}(c x)=c .
$$

So

$$
\frac{d f}{d x}=\frac{d f}{d u} \cdot \frac{d u}{d x}=\cos (c x) \cdot c=c \cos (c x)
$$

Solution 1.4

Let $u=e^{x}$. Then

$$
\frac{d f}{d u}=\frac{d}{d u}(\sin u)=\cos u=\cos \left(e^{x}\right)
$$

and

$$
\frac{d u}{d x}=\frac{d}{d x}\left(e^{x}\right)=e^{x} .
$$

So

$$
\frac{d f}{d x}=\frac{d f}{d u} \cdot \frac{d u}{d x}=\cos \left(e^{x}\right) \cdot e^{x}=e^{x} \cos \left(e^{x}\right)
$$

Solution 1.5

Let $u=e^{x}$. Then

$$
\frac{d f}{d u}=\frac{d}{d u}\left(u^{1000}\right)=1000 u^{999}=1000(\sin x)^{999}
$$

and

$$
\frac{d u}{d x}=\frac{d}{d x}(\sin x)=\cos x
$$

So

$$
\frac{d f}{d x}=\frac{d f}{d u} \cdot \frac{d u}{d x}=1000(\sin x)^{999} \cos x
$$

Solution 1.6

Since this is a quotient, we're going to use the quotient rule. But first look at the numerator on its own: $\sin (\cos x)$. Since the \cos is inside the sin, we'll need the chain rule for this part.
Let $u=\cos x$. Then

$$
\frac{d f}{d u}=\frac{d}{d u}(\sin u)=\cos u=\cos (\cos x)
$$

and

$$
\frac{d u}{d x}=\frac{d}{d x}(\cos x)=-\sin x
$$

So

$$
\frac{d f}{d x}=\frac{d f}{d u} \cdot \frac{d u}{d x}=\cos (\cos x) \cdot(-\sin x)=-\sin x \cos (\cos x) .
$$

Continued on next page.

Solution 1.6 cont.

Now we are ready to differentiate the whole function.

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{\sin (\cos x)}{x^{2}}\right) & =\frac{x^{2} \frac{d}{d x}(\sin (\cos x))-\sin (\cos x) \frac{d}{d x}\left(x^{2}\right)}{\left(x^{2}\right)^{2}} \\
& =\frac{x^{2}(-\sin x \cos (\cos x))-\sin (\cos x) \cdot 2 x}{x^{4}}
\end{aligned}
$$

It would be okay to leave it like this, but we can simplify it by cancelling out one x from the numerator and denominator:

$$
\frac{-x \sin x \cos (\cos x)-2 \sin (\cos x)}{x^{3}}
$$

Solution 1.7

Since this is a fraction, we'll need the quotient rule. Let's look at the denominator first. Let $u=x^{2}$. Then

$$
\frac{d f}{d u}=\frac{d}{d u}\left(e^{u}\right)=e^{u}=e^{\left(x^{2}\right)}
$$

and

$$
\frac{d u}{d x}=\frac{d}{d x}\left(x^{2}\right)=2 x .
$$

So

$$
\frac{d f}{d x}=\frac{d f}{d u} \cdot \frac{d u}{d x}=e^{\left(x^{2}\right)} \cdot 2 x=2 x e^{\left(x^{2}\right)}
$$

Continued on next page.

Solution 1.7 cont.

Now we're ready to look at the whole thing.

$$
\begin{aligned}
\frac{d}{d x}\left(\frac{x^{2}-3 x+1}{e^{\left(x^{2}\right)}}\right) & =\frac{e^{\left(x^{2}\right)} \cdot \frac{d}{d x}\left(x^{2}-3 x+1\right)-\left(x^{2}-3 x+1\right) \frac{d}{d x}\left(e^{\left(x^{2}\right)}\right)}{\left(e^{\left(x^{2}\right)}\right)^{2}} \\
& =\frac{e^{\left(x^{2}\right)}(2 x-3)-\left(x^{2}-3 x+1\right)\left(2 x e^{\left(x^{2}\right)}\right)}{\left(e^{\left(x^{2}\right)}\right)^{2}}
\end{aligned}
$$

Solution 2.2

Let $u=\frac{1}{x}$. Then

$$
\frac{d f}{d u}=\frac{d}{d u}(\sin u)=\cos u=\cos \frac{1}{x}
$$

and

$$
\frac{d u}{d x}=\frac{d}{d x}\left(\frac{1}{x}\right)=-\frac{1}{x^{2}}
$$

So

$$
\frac{d f}{d x}=\frac{d f}{d u} \cdot \frac{d u}{d x}=\left(\cos \frac{1}{x}\right) \cdot\left(-\frac{1}{x^{2}}\right)=-\frac{\cos \frac{1}{x}}{x^{2}} .
$$

Solution 2.3

Either the chain rule or the product rule can be used for the numerator. In either case, its derivative is $4 \sin x \cos x$. We finish up with the quotient rule:

$$
\frac{d}{d x}\left(\frac{\sin ^{2} x-\cos ^{2} x}{x^{2}}\right)=\frac{x^{2} \cdot(4 \sin x \cos x)-\left(\sin ^{2} x-\cos ^{2} x\right)(2 x)}{\left(x^{2}\right)^{2}}
$$

Solution 3

Let's look at the inside first: $\cos \left(e^{x}\right)$. Using the chain rule, we'll wind up with $-e^{x} \sin \left(e^{x}\right)$. Now look at the whole thing. Let $u=\cos \left(e^{x}\right)$. Then

$$
\frac{d f}{d u}=\frac{d}{d u}(\sin u)=\cos u=\cos \left(\cos \left(e^{x}\right)\right)
$$

and

$$
\frac{d u}{d x}=\frac{d}{d x}\left(\cos \left(e^{x}\right)\right)=-e^{x} \sin \left(e^{x}\right) .
$$

So

$$
\frac{d f}{d x}=\frac{d f}{d u} \cdot \frac{d u}{d x}=\cos \left(\cos \left(e^{x}\right)\right) \cdot\left(-e^{x} \sin \left(e^{x}\right)\right) .
$$

