Lecture 16 Activity: Maximum and Minimum Values

Ben Logsdon
Math 3, Fall 2023

October 16, 2023

```
math.dartmouth.edu/~blogsdon/activity16.pdf
```

1. Find the local extrema of the function $f(x)=x^{3}-12 x^{2}+45 x-1$ and the x-coordinates at which they occur.
2. Find the critical point(s) of the function $f(x)=a x^{2}+b x+c$ when $a \neq 0$. What does this tell you about the graph of f ?
3. Find the global extrema of the function $f(x)=x e^{2 x}$ on the interval $[-1,0]$.
4. Find the critical point(s) of the function $f(x)=a x^{3}+b x^{2}+c x+d$ when $a \neq 0$. What does this tell you about the graph of f ?
5. Challenge problem: The acceleration due to gravity on Earth is about $-9.8 \mathrm{~m} / \mathrm{sec}^{2}$. Suppose that I throw a ball straight upward. I release the ball from my hand at precisely 1.5 m above ground level at a speed of $5 \mathrm{~m} / \mathrm{sec}$. How high will the ball travel?

Solution 1

Find critical points We have $f^{\prime}(x)=3 x^{2}-24 x+45$. Solving this equation, we get $x=3,5$. These are critical points of f. Since there is nowhere where f^{\prime} doesn't exist, 3 and 5 are all the critical points of f.
First Derivative Test There are three intervals to consider: $(-\infty, 3)$, $(3,5)$, and $(5, \infty)$. All we need to do is plug in one number for each of these intervals.
If we do this, we find that $f^{\prime}(0)>0, f^{\prime}(4)<0$, and $f^{\prime}(6)>0$. Therefore, f has a local maximum at 3 and a local minimum at 5 .

Solution 2

We have $f^{\prime}(x)=2 a x+b$. When $0=2 a x+b$, we have $x=-\frac{b}{2 a}$. Since f^{\prime} exists everywhere, $-\frac{b}{2 a}$ is the only critical point of f. Recall that the graph of f is a parabola, which has a single vertex, which is either its global maximum or global minimum. This tells us that $-\frac{b}{2 a}$ is the x-coordinate of the vertex.

Solution 3

Check continuity The function $x e^{2 x}$ is continuous everywhere, so it is continuous on the interval $[-1,0]$.
Find critical points We have $f^{\prime}(x)=e^{2 x}+2 x e^{2 x}$.. This function exists everywhere, so the only critical points of f are its roots. So

$$
0=e^{2 x}+2 x e^{2 x}=(1+2 x) e^{2 x} .
$$

Since $e^{2 x}$ is always positive, we just have $0=1+2 x$, which means $x=-\frac{1}{2}$. This is the only critical point of f.
Plug in critical points and endpoints The critical point is $-\frac{1}{2}$, and the endpoints are -1 and 0 . We have

$$
\begin{aligned}
f(-1) & =-e^{-2}=-\frac{1}{e^{2}} \\
f(-1 / 2) & =(-1 / 2) e^{2(-1 / 2)}=-\frac{1}{e} \\
f(0) & =0 .
\end{aligned}
$$

The global max is the greatest of these, which is $f(0)=0$. The global min is the least of these, which is $f(-1 / 2)=-\frac{1}{e}$.

Solution 4

We have $f^{\prime}(x)=3 a x^{2}+2 b x+c$. This exists everywhere, so the only critical points of f are where $f^{\prime}(x)=0$. We can solve this using the quadratic formula, and we end up with

$$
x=\frac{-(2 b) \pm \sqrt{(2 b)^{2}-4 \cdot(3 a) \cdot c}}{2(3 a)}
$$

Depending on a, b, and c, this will either be two solutions, one solution, or no solutions. If there are two solutions, these will be the x-coordinates of the peak and valley (local max and min) in the graph of f. (As an example, use a graphing calculator to graph $f(x)=x^{3}-x$. It has two critical points: one local max and one local min.)

If there is one solution, it will be the x-coordinate of a critical point in f, but it will not be a local max or min. (As an example, use a graphing calculator to graph $f(x)=x^{3}$. It has a critical point at $x=0$.)

If there are no solutions, then f has no critical points. (As an example, use a graphing calculator to graph $f(x)=x^{3}+x$.)

Solution 5

Let $f(t)$ denote the height of the ball at time t, where $t=0$ is the moment the ball is released from my hand. The acceleration of -9.8 means that $f^{\prime \prime}(t)=-9.8$. Since the ball is released at a height of 1.5 , we have $f(0)=1.5$. Since it is released with a speed of 5 , we have $f^{\prime}(0)=5$.

We can use a quadratic equation for this function: $f(x)=a x^{2}+b x+c$. Since $f^{\prime \prime}(t)=-9.8$, we have $a=-4.9$. Since $f^{\prime}(0)=5$, we have $b=5$. Since $f(0)=1.5$, we have $c=1.5$. Thus, we can model the motion of the ball using the equation $f(t)=-4.9 t^{2}+5 t+1.5$.

To find the height of the ball at its highest point, we must find the global maximum of f. Since f is a parabola with negative a, this will occur at the only critical point of f. From Solution 2 above, we know that this critical point occurs at $t=-\frac{b}{2 a}$. Thus, the time when the ball is highest is $t=-\frac{5}{-9.8}=\frac{5}{9.8}$. To find the height, we plug this into the original function: $f(5 / 9.8) \approx 2.8$ meters above ground level.

