Lecture 17 Activity: Mean Value Theorem and the Shape of Graphs

Originally Written by Nadia Lafreniére and Bosu Choi Updated by Ben Logsdon Math 3, Fall 2023

October 18, 2023
math.dartmouth.edu/~blogsdon/activity17.pdf

1. Sketch the graphs of the following functions:

$$
\begin{aligned}
& 1.1 f(x)=(x-2)(x-1)^{2} \\
& 1.2 g(x)=\frac{x+1}{(x-2)^{2}}
\end{aligned}
$$

2. For each of the following two sets of conditions, sketch the graph of a function that satisfies all of the given conditions:

$$
\begin{aligned}
& 2.1 f^{\prime}(0) \\
& f^{\prime}(x)>0 \text { if } x<0 \text { or } 2<x<4, \\
& f^{\prime}(x)<0 \text { if } 0<x<2 \text { or } x>4, \\
& f^{\prime \prime}(x)>0 \text { if } 1<x<3, \\
& f^{\prime \prime}(x)<0 \text { if } x<1 \text { or } x>3
\end{aligned}
$$

$2.2 f^{\prime}(x)<0$ and $f^{\prime \prime}(x)>0$ for all x.
3. Suppose you drive for 0.5 hours, covering a distance of 35 miles. Is there any time during this drive when your speed has exceeded 65 mph ? Why?

Solutions

Sketch the graph of $f(x)=(x-2)(x-1)^{2}$.
Domain is $(-\infty, \infty)$, and there is no asymptote because it is a polynomial.
$f(0)=-2, f(x)=0$ exactly when x is 1 or 2 .
$f(x)=x^{3}-4 x^{2}+5 x-2$. Therefore, $f^{\prime}(x)=3 x^{2}-8 x+5$ and $f^{\prime \prime}(x)=6 x-8$.
$f^{\prime}(x)=0$ when $x=\frac{8 \pm \sqrt{64-60}}{6}$, so when $x=1$ or $x=\frac{5}{3}$. $f^{\prime \prime}(x)=0$ when $x=\frac{4}{3}$.

	$-\infty$	\ldots	0	\ldots	1	\ldots	$\frac{4}{3}$	\ldots	$\frac{5}{3}$	\ldots	2	\ldots	∞
f	$-\infty$	-2			0			<0			0	>0	∞
f^{\prime}		>0			0	<0			0		>0		
$f^{\prime \prime}$	<0				0			>0					
	\nearrow				\searrow		\searrow			\nearrow			
	$C D$			$C D$		$C U$			$C U$				

Solutions

Sketch the graph of $f(x)=(x-2)(x-1)^{2}$.

Solutions

Sketch the graph of $g(x)=\frac{x+1}{(x-2)^{2}}$.
Domain is $(-\infty, 2) \cup(2, \infty)$. There is a vertical asymptote at $x=2$, since 2 is not in the domain, and as defined by the limit at 2 below.
$g(0)=\frac{1}{4}, f(x)=0$ exactly when x is -1 .
$g^{\prime}(x)=\frac{(x-2)^{2}-2(x-2)(x+1)}{(x-2)^{4}}=\frac{-x-4}{(x-2)^{3}}$ using quotient rule.
$g^{\prime}(x)=0$ when $x=-4$, and is undefined where at $x=2$. The derivative is negative to the left of $x=-4$ and to the right of $x=2$, and positive elsewhere.
$g^{\prime \prime}(x)=\frac{-(x-2)^{3}-3(x-2)^{2}(-x-4)}{(x-2)^{6}}=\frac{-(x-2)-3(-x-4)}{(x-2)^{4}}=\frac{2 x+14}{(x-2)^{4}}$ which
is 0 when $x=-7$, and undefined at $x=2$. (The function is concave down to the left of $x=-7$, and concave up elsewhere).
The limits at infinity are $\lim _{x \rightarrow-\infty} g(x)=0=\lim _{x \rightarrow-\infty} g(x)$ (horizontal asymptote).
Around the vertical asymptote:

$$
\lim _{x \rightarrow 2^{-}} g(x)=+\infty=\lim _{x \rightarrow 2^{-}} g(x)
$$

Solutions

Sketch the graph of $f(x)=\frac{x+1}{(x-2)^{2}}$.

Solutions

Sketch the graph of a function that satisfies all of the given conditions:

$$
\begin{aligned}
& f^{\prime}(0)=f^{\prime}(2)=f^{\prime}(4)=0, \\
& f^{\prime}(x)>0 \text { if } x<0 \text { or } 2<x<4, \\
& f^{\prime}(x)<0 \text { if } 0<x<2 \text { or } x>4, \\
& f^{\prime \prime}(x)>0 \text { if } 1<x<3, \\
& f^{\prime \prime}(x)<0 \text { if } x<1 \text { or } x>3 .
\end{aligned}
$$

Solutions

Sketch the graph of a function that satisfies all of the given conditions: $f^{\prime}(x)<0$ and $f^{\prime \prime}(x)>0$ for all x.

$f(x)=e^{-x}$ is an example of such a function.

