Lecture 19 Activity: Maximum and Minimum Values

Ben Logsdon
Math 3, Fall 2023

October 23, 2023
math. dartmouth.edu/~blogsdon/activity19.pdf
Compute the following limits.

1. $\lim _{x \rightarrow 0^{+}} x^{2} \ln x$
2. $\lim _{x \rightarrow \frac{\pi}{2}+} \frac{\tan x}{\sec x}$
3. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x}$
4. $\lim _{x \rightarrow \pi} \frac{\sin x}{\cos x-1}$
5. $\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{3}}$
6. $\lim _{x \rightarrow \infty}\left(e^{x}-x^{4}\right)$
7. $\lim _{x \rightarrow \infty} \frac{\ln x}{\sqrt[n]{x}}$, where $n \geq 1$
8. $\lim _{x \rightarrow \infty} \frac{e^{\left(x^{2}\right)}}{e^{x}}$
9. $\lim _{x \rightarrow-\infty}\left(e^{x}\right)^{1 / x}$
10. $\lim _{x \rightarrow 0}(x+1)^{1 / x}$

Solution 1

This is an indeterminate form $0 \cdot \infty$. Thus, we will try to apply I'Hospital's Rule. We have

$$
\lim _{x \rightarrow 0^{+}} x^{2} \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{x^{-2}}
$$

Since this now has indeterminate form ∞ / ∞, we can apply l'Hospital's Rule:

$$
\lim _{x \rightarrow 0^{+}} \frac{x^{-1}}{-2 x^{-3}}=\lim _{x \rightarrow 0^{+}} \frac{x^{2}}{-2}
$$

We can evaluate this by plugging in, and we get 0 .

Solution 2

This is an indeterminate form ∞ / ∞. We could apply l'Hospital's Rule, but it is easier to evaluate by simplifying:

$$
\begin{aligned}
\lim _{x \rightarrow \frac{\pi}{2}^{+}} \frac{\tan x}{\sec x} & =\lim _{x \rightarrow \frac{\pi}{2}+} \frac{\sin x / \cos x}{1 / \cos x} \\
& =\lim _{x \rightarrow \frac{\pi}{2}^{+}} \sin x
\end{aligned}
$$

We can evaluate this by plugging in; we get 1 .

Solution 3

This is an indeterminate form $0 / 0$. Thus, we can apply l'Hospital's Rule:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\cos x}{x} & =\lim _{x \rightarrow 0} \frac{\sin x}{1} \\
& =\lim _{x \rightarrow 0} \sin x
\end{aligned}
$$

We can evaluate this by plugging in; we get 0 .

Solution 4

If we plug in π, we get $0 /-2=0$. This is not and indeterminate form-therefore, we cannot apply l'Hospital's Rule! Instead, this is a limit that we can just evaluate by plugging in; the answer is 0 .

Solution 5

This is an indeterminate form ∞ / ∞. So we can apply l'Hospital's rule:

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{x^{3}}=\lim _{x \rightarrow \infty} \frac{e^{x}}{3 x^{2}}
$$

This is still ∞ / ∞, so we can apply l'Hospital's Rule again:

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{6 x}
$$

This is still ∞ / ∞, so we apply l'Hospital's Rule again:

$$
\lim _{x \rightarrow \infty} \frac{e^{x}}{6}
$$

Now we can see that the limit is ∞.

Solution 6

This is an indeterminate form $\infty-\infty$. We'll first rewrite it like this:

$$
\lim _{x \rightarrow \infty} e^{x}-x^{4}=\lim _{x \rightarrow \infty} x^{4}\left(\frac{e^{x}}{x^{4}}-1\right)
$$

Now focus on e^{x} / x^{4}. This is the indeterminate form ∞ / ∞. If we apply l'Hospital's rule a few times, we can see that this limit is ∞. (See Solution 5.) Thus, our original limit is now written as $\infty \cdot \infty$, which means that it is just ∞.

Solution 7

Regardless of the value of n, this is the indeterminate form ∞ / ∞. We can rewrite it as

$$
\lim _{x \rightarrow \infty} \frac{\ln x}{x^{1 / n}}
$$

and apply l'Hospital's Rule:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{1 / x}{\frac{1}{n} x^{1 / n-1}} & =\lim _{x \rightarrow \infty} \frac{n x^{1-1 / n}}{x} \\
& =\lim _{x \rightarrow \infty} n x^{-1 / n} \\
& =\lim _{x \rightarrow \infty} \frac{n}{\sqrt[n]{x}} \\
& =0
\end{aligned}
$$

Solution 8

This is an indeterminate form ∞ / ∞. We could apply l'Hospital's Rule, but it turns out to make the limit more complicated rather than less. We will start by simplifying and continue:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} e^{x^{2}-x} & =e^{\left(\lim _{x \rightarrow \infty}\left(x^{2}-x\right)\right)} \\
& =e^{\infty} \\
& =\infty
\end{aligned}
$$

The inner limit can be evaluated by noticing that $x^{2}-x=x(x-1)$, which is $\infty \cdot \infty$.

Solution 9

This is the indeterminate form 0^{0}. We try to turn this into a quotient as follows:

$$
\begin{aligned}
\lim _{x \rightarrow-\infty}\left(e^{x}\right)^{1 / x} & =\lim _{x \rightarrow-\infty} e^{\ln \left(\left(e^{x}\right)^{1 / x}\right)} \\
& =\lim _{x \rightarrow-\infty} e^{\frac{1}{x} \ln \left(\left(e^{x}\right)\right)} \\
& =\lim _{x \rightarrow-\infty} e^{x / x} \\
& =\lim _{x \rightarrow-\infty} e \\
& =e
\end{aligned}
$$

We ended up not even using l'Hospital's Rule!

Solution 10

This is the indeterminate form 1^{∞}. We try to turn this into a quotient:

$$
\begin{aligned}
\lim _{x \rightarrow 0}(x+1)^{1 / x} & =\lim _{x \rightarrow 0} e^{\ln \left((x+1)^{1 / x}\right)} \\
& =\lim _{x \rightarrow 0} e^{\frac{1}{x} \ln ((x+1))} \\
& =e^{\lim _{x \rightarrow 0} \frac{\ln (x+1)}{x}}
\end{aligned}
$$

The limit on the inside has indeterminate form $0 / 0$. Thus, we can use I'Hospital's Rule, and we get that it is $\lim _{x \rightarrow 0} \frac{1}{x+1}=1$. (Try working it out in detail.)
Thus, the original limit is $e^{1}=e$.

