Lecture 22 Activity: Newton's Method and Antiderivatives

Ben Logsdon
Math 3, Fall 2023

October 30, 2023

```
math.dartmouth.edu/~blogsdon/activity22.pdf
```

1. Use Newton's Method and a calculator to estimate $\sqrt[4]{2}$ correct to 4 decimal places. (Hint: Use $f(x)=x^{4}-2$ with starting approximation 1.)
2. Find general antiderivatives of the following functions.

$$
2.1 x^{4}
$$

$2.23 x^{2}+\sin x$
$2.3 \frac{5}{1+x^{2}}$
3. Find the antiderivative of $2 x+1$ that passes through the point $(1,4)$.

Solution 1

We'll use a starting approximation of $x_{0}=1$. We have

$$
\begin{array}{ll}
x_{1}=1-\frac{(1)^{4}-2}{4(1)^{3}} & =1.25 \\
x_{2}=1.25-\frac{1.25^{4}-2}{4(1.25)^{3}} & =1.1935 \\
x_{3}=1.1935-\frac{1.1935^{4}-2}{4(1.1935)^{3}} & \approx 1.1892 \\
x_{4} \approx 1.1892-\frac{1.1892^{4}-2}{4(1.1892)^{3}} & \approx 1.1892 .
\end{array}
$$

Thus, 1.1892 is an approximation of $\sqrt[4]{2}$ correct to four decimal places.

Solution 2.1

To find the antiderivative of x^{4}, we need the power rule, which gives us $\frac{x^{5}}{5}+C$.

Solution 2.2

An antiderivative of $3 x^{2}$ is x^{3}, and an antiderivative of $\sin x$ is $-\cos x$. Therefore, an antiderivative of $3 x^{2}+\sin x$ is $x^{3}-\cos x$. The general antiderivative is $x^{3}-\cos x+C$.

Solution 2.3

The derivative of $\arctan x$ is $\frac{1}{1+x^{2}}$. The derivative of $5 \arctan x$ is $\frac{5}{1+x^{2}}$. Therefore, the general antiderivative of $\frac{5}{1+x^{2}}$ is $5 \arctan x+C$.

Solution 3

The general antiderivative of $2 x+1$ is $x^{2}+x+C$. To find the specific antiderivative passing through (1,4), we plug in 1 for x and set the whole thing equal to 4 :

$$
4=1^{2}+1+C .
$$

Solving this equation leads to $C=2$. So the antiderivative passing through $(1,4)$ is $x^{2}+x+2$.

