Lecture 22 Activity: Newton's Method and Antiderivatives

Ben Logsdon Math 3, Fall 2023

October 30, 2023

math.dartmouth.edu/~blogsdon/activity22.pdf

- 1. Use Newton's Method and a calculator to estimate $\sqrt[4]{2}$ correct to 4 decimal places. (Hint: Use $f(x) = x^4 2$ with starting approximation 1.)
- 2. Find general antiderivatives of the following functions.
 - 2.1 x^4 2.2 $3x^2 + \sin x$ 2.3 $\frac{5}{1+x^2}$
- 3. Find the antiderivative of 2x + 1 that passes through the point (1, 4).

Solution 1

We'll use a starting approximation of $x_0 = 1$. We have

$$x_{1} = 1 - \frac{(1)^{4} - 2}{4(1)^{3}} = 1.25$$

$$x_{2} = 1.25 - \frac{1.25^{4} - 2}{4(1.25)^{3}} = 1.1935$$

$$x_{3} = 1.1935 - \frac{1.1935^{4} - 2}{4(1.1935)^{3}} \approx 1.1892$$

$$x_{4} \approx 1.1892 - \frac{1.1892^{4} - 2}{4(1.1892)^{3}} \approx 1.1892.$$

Thus, 1.1892 is an approximation of $\sqrt[4]{2}$ correct to four decimal places.

Solution 2.1

To find the antiderivative of x^4 , we need the power rule, which gives us $\frac{x^5}{5} + C$.

An antiderivative of $3x^2$ is x^3 , and an antiderivative of $\sin x$ is $-\cos x$. Therefore, an antiderivative of $3x^2 + \sin x$ is $x^3 - \cos x$. The general antiderivative is $x^3 - \cos x + C$.

Solution 2.3

The derivative of $\arctan x$ is $\frac{1}{1+x^2}$. The derivative of $5 \arctan x$ is $\frac{5}{1+x^2}$. Therefore, the general antiderivative of $\frac{5}{1+x^2}$ is $5 \arctan x + C$.

Solution 3

The general antiderivative of 2x + 1 is $x^2 + x + C$. To find the specific antiderivative passing through (1, 4), we plug in 1 for x and set the whole thing equal to 4:

$$4 = 1^2 + 1 + C.$$

Solving this equation leads to C = 2. So the antiderivative passing through (1, 4) is $x^2 + x + 2$.