Lecture 23 Activity: Areas Under Curves

Ben Logsdon
Math 3, Fall 2023

November 1, 2023
math.dartmouth.edu/~blogsdon/activity23.pdf
In this problem, we will approximate and find the area under the curve $f(x)=x^{2}$ from $x=0$ to $x=2$.

1. Approximate the area using four rectangles with a right endpoint approximation using the following steps.
1.1 What is Δx, the width of each triangle?
1.2 Find the height of each triangle.
1.3 Find the area of each triangle.
1.4 Add all the areas together (You should get 3.75).
2. Approximate the area using n rectangles with a right endpoint approximation using the following steps.
2.1 What is Δx, the width of each triangle? (Your answer should have " n " in it.)
2.2 Consider the triangle number k. What is its left endpoint? What is its right endpoint? What is its height?
2.3 What is the area of triangle number k ?
2.4 Write an expression that adds all the areas together. (You'll need Σ-notation for this.)
2.5 We can make this approximation better by making n bigger, and we can make it perfect by taking the limit as $n \rightarrow \infty$. Write down this limit and evaluate it. (Your answer should be 8/3.)
