Lecture 24 Activity: Definite Integrals

Ben Logsdon
Math 3, Fall 2023

November 3, 2023

1. Calculate the integral $\int_{0}^{1} x^{3} d x$ using the definition. You may use the formula $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$. (The answer is $1 / 4$).
2. Calculate $\int_{-1}^{1} \sqrt{1-x^{2}}$. Hint: Use geometry for this one, not the definition. What shape is this function?
3. What is $\int_{0}^{2 \pi} \sin x d x$? Hint: Draw the graph of $\sin x$ and make an educated guess.
4. Suppose $\int_{0}^{5} f(x) d x=3, \int_{0}^{5} g(x) d x=-2, \int_{0}^{3} h(x) d x=10$.
4.1 What is $\int_{0}^{5}(f(x)-3 g(x)) d x$?
4.2 If $\int_{0}^{5}(f(x)+h(x)) d x=5$, what is $\int_{3}^{5} h(x) d x$?
5. Challenge problem: The formula we used to define $\int_{a}^{b} f(x) d x$ used Riemann sums with the right endpoint approximation. What would the formula look like if we used a left endpoint approximation instead? What about a midpoint approximation? Do you think the value of the definite integral changes based on which version we use?
