Lecture 24 Activity: Definite Integrals

Ben Logsdon Math 3, Fall 2023

November 3, 2023

math.dartmouth.edu/~blogsdon/activity24.pdf

- 1. Calculate the integral $\int_0^1 x^3 dx$ using the definition. You may use the formula $\sum_{i=1}^n i^3 = \frac{n^2(n+1)^2}{4}$. (The answer is 1/4).
- 2. Calculate $\int_{-1}^{1} \sqrt{1-x^2}$. **Hint:** Use geometry for this one, not the definition. What shape is this function?
- 3. What is $\int_0^{2\pi} \sin x \, dx$? **Hint:** Draw the graph of $\sin x$ and make an educated guess.
- 4. Suppose $\int_0^5 f(x) dx = 3$, $\int_0^5 g(x) dx = -2$, $\int_0^3 h(x) dx = 10$. 4.1 What is $\int_0^5 (f(x) - 3g(x)) dx$? 4.2 If $\int_0^5 (f(x) + h(x)) dx = 5$, what is $\int_3^5 h(x) dx$?
- 5. **Challenge problem:** The formula we used to define $\int_a^b f(x) dx$ used Riemann sums with the right endpoint approximation. What would the formula look like if we used a left endpoint approximation instead? What about a midpoint approximation? Do you think the value of the definite integral changes based on which version we use?