Lecture 7 Activity: Basic Derivative Rules

Ben Logsdon Math 3, Fall 2023

September 25, 2023

math.dartmouth.edu/~blogsdon/activity7solns.pdf

- 1. Compute derivatives of the following functions.
 - 1.1 $3x^{20} + 5e^x$. 1.2 $-5x^2 - 2x + 1$. 1.3 $\sqrt[3]{x}$. (Remember: $\sqrt[3]{x} = x^{1/3}$.) 1.4 1/x. (Remember: $1/x = x^{-1}$.) 1.5 $(5/x^2) + 6x$. (Remember: $1/x^2 = x^{-2}$.)
- 2. Suppose $f(x) = ax^2 + bx + c$ and that f(0) = 5, f'(0) = 10, and f''(0) = -2.
 - 2.1 What are *a*, *b*, and *c*? (Hint: First, figure out how to write f' and f'' in terms of *a*, *b*, and *c*.)
 - 2.2 What are the x and y coordinates of the highest point on this parabola? (Hint: The highest point is where the slope is 0. Write down the equation f'(x) = 0 and solve for x.)
- How many functions have a derivative of 0? A derivative of x? A derivative of x²?
- 4. **Challenge problem:** Use a graphing calculator to graph the function $f(x) = x^3 4x^2 + 4x 1$. Notice that it has a local minimum and a local maximum. What are the *x*-coordinates of these two points?

Solution 1.

1. $60x^{19} + 5e^x$. 2. -10x - 2. 3.

$$\frac{d}{dx}\left(\sqrt[3]{x}\right) = \frac{d}{dx}\left(x^{1/3}\right) = \frac{1}{3} \cdot x^{-2/3} = \frac{1}{3x^{2/3}} = \frac{1}{\sqrt[3]{x}}.$$

4.

$$\frac{d}{dx}\left(\frac{1}{x}\right) = \frac{d}{dx}x^{-1} = -1 \cdot x^{-2} = \frac{-1}{x^2}$$

5. $\frac{-10}{x^3} + 6.$

Solution 2.

- 1. First, let's calculate the first and second derivatives: f'(x) = 2ax + b and f''(x) = 2a. So -2 = f''(0) = 2a, which means a = -1. Therefore, f'(x) = -2x + b. Since 10 = f'(0) = -2(0) + b, this means b = 10. Finally, since $f(x) = -x^2 + 10x + c$, we have 5 = f(0) = c.
- The highest point will be where the slope is 0. Thus, we want to find the x such that f'(x) = 0. Above, we figured that f'(x) = -2x + 10, which means that we want to solve 0 = -2x + 10. The solution to this equation is x = 5. To get the y-coordinate, we plug back into the original function: f(5) = -5² + 10(5) + 5 = 30.

Solution 3.

For any constant c, $\frac{d}{dx}(c) = 0$. Similarly, $\frac{d}{dx}\left(\frac{x^2}{2} + c\right) = x$ and $\frac{d}{dx}\left(\frac{x^3}{3} + c\right) = x^2$. So in each case, the answer is "infinitely many," since there are infinitely many constants.

Solution 4.

Similarly to in question 2.2, the local minimum and maximum are where f'(x) = 0. First, compute $f'(x) = 3x^2 - 8x + 4$. We can use the quadratic formula to get solutions to this, which wind up being $\frac{2}{3}$ and 2. These are the answers.