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1 Introduction

Historically, computation has been a driving force in
the development of mathematics. To help measure the
sizes of their fields, the Egyptians invented geometry.
To help predict the positions of the planets, the Greeks
invented trigonometry. Algebra was invented to deal
with equations that arose when mathematics was used
to model the world. The list goes on, and it is not just
historical. If anything, computation is more important
than ever. Much of modern technology rests on algo-
rithms that compute quickly: examples range from
the wavelets that allow CAT scans, to the numer-
ical extrapolation of extremely complex systems in
order to predict weather and global warming, and to
the combinatorial algorithms that lie behind Internet
search engines (see Section ?? of The Mathematics

of Algorithm Design).
In pure mathematics we also compute, and many

of our great theorems and conjectures are, at root,
motivated by computational experience. It is said that
Gauss, who was an excellent computationalist, needed
only to work out a concrete example or two to dis-
cover, and then prove, the underlying theorem. While
some branches of pure mathematics have perhaps lost
contact with their computational origins, the advent
of cheap computational power and convenient mathe-
matical software has helped to reverse this trend.

One mathematical area where the new emphasis on
computation can be clearly felt is number theory, and
that is the main topic of this article. A prescient call-
to-arms was issued by Gauss as long ago as 1801:

The problem of distinguishing prime numbers from
composite numbers, and of resolving the latter into
their prime factors, is known to be one of the most
important and useful in arithmetic. It has engaged the
industry and wisdom of ancient and modern geome-
ters to such an extent that it would be superfluous to
discuss the problem at length. Nevertheless we must
confess that all methods that have been proposed
thus far are either restricted to very special cases or

are so laborious and difficult that even for numbers
that do not exceed the limits of tables constructed by
estimable men, they try the patience of even the prac-
ticed calculator. And these methods do not apply at
all to larger numbers. . . Further, the dignity of the sci-
ence itself seems to require that every possible means
be explored for the solution of a problem so elegant
and so celebrated.

Factorization into primes is a very basic issue in
number theory, but essentially all branches of number
theory have a computational component. And in some
areas there is such a robust computational literature
that we discuss the algorithms involved as mathemat-
ically interesting objects in their own right. In this
article we will briefly present a few examples of the
computational spirit: in analytic number theory (the
distribution of primes and the Riemann hypothesis);
in Diophantine equations (Fermat’s last theorem and
the abc conjecture); and in elementary number theory
(primality and factorization). A secondary theme that
we shall explore is the strong and constructive inter-
play between computation, heuristic reasoning, and
conjecture.

2 Distinguishing Prime Numbers from
Composite Numbers

The problem is simple to state. Given an integer n > 1,
decide if n is prime or composite. And we all know an
algorithm. Divide n by each positive integer in turn.
Either we find a proper factor, in which case we know
that n is composite, or we do not, in which case we
know that n is prime. For example, take n = 269. It
is odd, so it has no even divisors. It is not a multiple
of 3, so it has no divisor which is a multiple of 3.
Continuing, we rule out 5, 7, 11, and 13. The next
possibility, 17, has a square that is greater than 269,
which means that if 269 were a multiple of 17, then it
would also have to be a multiple of some number less
than 17. Since we have ruled that out, we can stop our
trial division at 13 and conclude that 269 is prime. (If
we were actually carrying out the algorithm, we might
try dividing 269 by 17, in which case we would discover
that 269 = 15×17+14. At that point we would notice
that the quotient, 15, is less than 17, which is what
would tell us that 172 was greater than 269. Then we
could stop.) In general, since a composite number n
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has a proper factor d with d � √
n, one can give up on

the trial dividing once one passes
√

n, at which point
we know that n is prime.

This straightforward method is excellent for men-
tal computation with small numbers, and for machine
computation for somewhat larger numbers. But it
scales poorly, in that if you double the number of digits
of n, then the time for the worst case is squared; it is
therefore an “exponential time” algorithm. One might
tolerate such an algorithm for 20-digit inputs, but
think how long it would take to establish the primality
of a 40-digit number! And you can forget about num-
bers with hundreds or thousands of digits. The issue
of how the running time of an algorithm scales when
one goes to larger inputs is absolutely paramount in
measuring one algorithm against another. In contrast
to the exponential time it takes to use trial division to
recognize primes, consider the problem of multiplying
two numbers. The school method of multiplication is
to take each digit of one number in turn and multiply
it by the other number, forming a parallelogram array.
One then performs an addition to obtain the answer. If
you now double the number of digits in each number,
then the parallelogram becomes twice as large in each
dimension, so the running time grows by a factor of
about 4. Multiplication of two numbers is an example
of a “polynomial time” algorithm; its runtime scales
by a constant factor when the input length is doubled.

One might then rephrase Gauss’s call to arms as
follows. Is there a polynomial time algorithm that dis-
tinguishes prime numbers from composite numbers? Is
there a polynomial time algorithm that can produce a
nontrivial factor of a composite number? It might not
be apparent at this point that these are two different
questions, since trial division does both. We will see,
though, that it is convenient to separate them, as did
Gauss.

Let us focus on recognizing primes. What we would
like is a simply computed criterion that primes sat-
isfy and composites do not, or vice versa. An old
theorem of Wilson might just fit the bill. Note that
6! = 720, which is just one less than a multiple of
seven. Wilson’s theorem asserts that if n is prime, then
(n − 1)! ≡ −1 (mod n). (The meaning of this and
similar statements is explained in modular arith-

metic.) This cannot hold when n is composite, for if
p is a prime factor of n and is smaller than n, then it
is a factor of (n − 1)!, so it cannot possibly be a factor

of (n − 1)! + 1. Thus, we have an ironclad criterion
for primality. However, the Wilson criterion does not
meet the standard of being simply computed, since we
know no especially rapid way of computing factorials
modulo another number. For example, Wilson predicts
that 268! ≡ −1 (mod 269), as we have already seen
that 269 is prime. But if we did not know this already,
how in the world could we quickly find the remain-
der when 268! is divided by 269? We can work out
the product 268! one factor at a time, but this would
take many more steps than trying divisors up to 17.
It is hard to prove that something cannot be done,
and in fact there is no theorem that says we cannot
compute a! mod b in polynomial time. We do know
some ways of speeding up the computation over the
totally naive method, but all methods known so far
take exponential time. So, Wilson’s theorem initially
seems promising, but in fact it is no help at all unless
we can find a fast way to compute a! mod b.

How about Fermat’s little theorem? Note that
27 = 128, which is 2 more than a multiple of 7. Or
take 35 = 243, which is 3 mod 5. Fermat’s little the-
orem tells us that if n is prime and a is any integer,
then an ≡ a (mod n). If computing a large factorial
modulo n is hard, perhaps it is also hard to compute
a large power modulo n.

It cannot hurt to try it out for some moderate
example to see if any ideas pop up. Take a = 2 and
n = 91, so that we are trying to compute 291 mod 91.
A powerful idea in mathematics is that of reduc-
tion. Can we reduce this computational problem to
a smaller one? Notice that if we had already com-
puted 245 mod 91, obtaining a remainder r1, say, then
291 ≡ 2r2

1 (mod 91). That is, it is just a short addi-
tional calculation to get to our goal, yet the power 45
is only half as big. How to continue is clear: we further
reduce to the exponent 22, which is less than half of 45.
If 222 mod 91 = r2, then 245 ≡ 2r2

2 (mod 91). And of
course 222 is the square of 211, and so on. It is not
so hard to “automate” this procedure: the exponent
sequence

1, 2, 5, 11, 22, 45, 91

can be read directly from the binary (base 2) repre-
sentation of 91 as 1011011, since the above sequence
in binary is

1, 10, 101, 1011, 10110, 101101, 1011011.



Princeton Companion to Mathematics Proof 3

These are the initial strings from the left of 1011011.
And it is plain that the transition from one term to
the next is either the double or the double plus 1.

This procedure scales nicely. When the number of
digits of n is doubled, so is the sequence of exponents,
and the time it takes to get from one exponent to
the next, being a modular multiplication, is multiplied
by 4. (As with naive multiplication, naive divide-with-
remainder also takes four times as long when the size
of the problem is doubled.) Thus, the overall time is
multiplied by 8, yielding a polynomial time method.
We call this the “powermod” algorithm.

So, let us try to illustrate Fermat’s little theorem,
taking a = 2 and n = 91. Our sequence of powers is

21 ≡ 2, 22 ≡ 4, 25 ≡ 32, 211 ≡ 46,

222 ≡ 23, 245 ≡ 57, 291 ≡ 37,

where each congruence is modulo 91, and each term
in the sequence is found by squaring the prior one
mod 91 or squaring and multiplying by 2 mod 91.

Wait a second: does Fermat’s little theorem not say
that we are supposed to get 2 for the final residue?
Well, yes, but this is guaranteed only if n is prime. And
as you have probably already noticed, 91 is composite.
In fact, the computation proves this.

Quite remarkably, here is an example of a compu-
tation that proves that n is composite, yet it does not
reveal any nontrivial factorization!

You are invited to try out the powermod algorithm
as above, but to change the base of the power from 2
to 3. The answer you should come to is that 391 ≡ 3
(mod 91): that is, the congruence for Fermat’s little
theorem holds. Since you already know that 91 is com-
posite, I am sure you would not jump to the false con-
clusion that it is prime! So, as it stands, Fermat’s little
theorem can be used to sometimes recognize compos-
ites, but it cannot be used to recognize primes.

There are two interesting further points to be made
regarding Fermat’s little theorem. First, on the nega-
tive side, there are some composites, such as n = 561,
where the Fermat congruence holds for every integer
a. These numbers n are called Carmichael numbers,
and unfortunately (from the point of view of testing
primality) there are infinitely many of them, a result
due to Alford, Granville, and me. But, on the positive
side, if one were to choose randomly among all pairs
a, n for which an ≡ a (mod n), with a < n and n

bounded by a large number x, almost certainly (as x

grows) you would choose a pair with n prime, a result
of Erdős and myself.

It is possible to combine Fermat’s little theorem
with another elementary property of (odd) prime
numbers. If n is an odd prime, there are exactly two
solutions to the congruence x2 ≡ 1 (mod n), namely
±1. Actually, some composites have this property as
well, but composites divisible by two different odd
primes do not.

Now let us suppose that n is an odd number and
that we wish to determine whether it is prime. Sup-
pose that we pick some number a with 1 � a � n − 1
and discover that an−1 ≡ 1 (mod n). If we set x =
a(n−1)/2, then x2 = an−1 ≡ 1 (mod n); so, by the sim-
ple property of primes just mentioned, if n is prime,
then x must be ±1. Therefore, if we calculate a(n−1)/2

and discover that it is not congruent to ±1 (mod n),
then n must be composite.

Let us try this idea with a = 2, n = 561. We know
already that 2560 ≡ 1 (mod 561), so what is 2280 mod
561? This too turns out to be 1, so we have not shown
that 561 is composite. However, we can go further,
since now we know that 2140 is also a square root of 1
and computing this we find that 2140 ≡ 67 (mod 561).
So now we have found a square root of 1 that is not
±1, which proves that 561 is composite. (Of course, for
this particular number, it is obviously divisible by 3,
so there was not really any mystery about whether it
was prime or composite. But the method can be used
in much less obvious cases.) In practice, there is no
need to backtrack from a higher exponent to a smaller
one. Indeed, in order to calculate 2560 (mod 561) by
the efficient method outlined earlier, one calculates
the numbers 2140 and 2280 along the way, so that this
generalization of the earlier test is both quicker and
stronger.

Here is the general principle that we have illus-
trated. Suppose that n is an odd prime and let a be
an integer not divisible by n. Write n−1 = 2st, where
t is odd. Then

either at ≡ 1 (mod n) or a2it ≡ −1 (mod n)

for some i = 0, 1, . . . , s−1. Call this the strong Fermat
congruence. The wonderful thing here is that there is
no analogue of a Carmichael number—as proved inde-
pendently by Monier and Rabin. They showed that if
n is an odd composite, then the strong Fermat con-
gruence fails for at least three-quarters of the choices
for a with 1 � a � n − 1.
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If you want only to be able to distinguish between
primes and composites in practice, and you do not
insist on proof, then you have read enough. Namely,
given a large odd number n, choose 20 values of a

at random from [1, n − 1], and begin trying to verify
the strong Fermat congruence with these bases a. If it
should ever fail, you may stop: the number n must be
composite. And if the strong Fermat congruence holds,
we might surmise that n is actually prime. Indeed,
if n were composite, the Monier–Rabin theorem says
that the chance that the strong Fermat congruence
would hold for 20 random bases is at most 4−20, which
is less than one chance in a trillion. Thus we have a
remarkable probabilistic test for primality. If it tells
us that n is composite, then we know for sure that n

is composite; if it tells us that n is prime, then the
chances that n is not prime are so small as to be more
or less negligible.

If three-quarters of the numbers a in [1, n − 1] pro-
vide the key to an easily checkable proof that the
odd composite number n is indeed composite, surely
it should not be so hard to find just one! How about
checking small numbers a, in order, until one is found?
Excellent, but when do we stop? Let us think about
this for a moment. We have given up the power of ran-
domness and are forcing ourselves to choose sequen-
tially among small numbers for the trial bases a. Can
we argue heuristically that they continue to behave
as if they were random choices? Well, there are some
connections among them. For example, if taking a = 2
does not result in a proof that n is composite, then
neither will taking any power of 2. It is theoretically
possible for 2 and 3 not to give proofs that n is com-
posite but for 6 to work just fine, but this turns out not
to be very common. So let us amend the heuristic and
assume that we have independence for prime values
of a. Up to log n log log n there are about log n primes
(via the prime number theorem discussed later in
this article); so, heuristically, the probability that n is
composite, but that none of these primes help us to
prove it, is about 4− log n < n−4/3. Since the infinite
sum

∑
n−4/3 converges, perhaps a stopping point of

log n log log n is sufficient, at least for large n.
Miller was able to prove the slightly weaker result

that a stopping point of c(log n)2 is adequate, but
his proof assumes a generalization of the Riemann

hypothesis. (We discuss the Riemann hypothesis
below; the generalization that Miller assumes is

beyond the scope of this article.) In further work,
Bach was able to show that we may take c = 2 in
this last result. Summarizing, if this generalized Rie-
mann hypothesis holds, and if the strong Fermat con-
gruence holds for every positive integer a � 2(log n)2,
then n is prime. So, provided that a famous unproved
hypothesis in another field of mathematics is correct,
one can decide in polynomial time, via a deterministic
algorithm, whether n is prime or composite. (It has
been tempting to use this conditional test, for if it
should ever lie to you and tell you that a particular
composite number is prime, then this failure—if you
were able to detect it—would be a disproof of one of
the most famous conjectures in mathematics. Perhaps
this is not too disastrous a failure!)

After Miller’s test in the 1970s, the question contin-
ually challenging us was whether it is possible to test
for primality in polynomial time without assuming
unproved hypotheses. Recently, Agrawal et al. (2004)
answered this question with a resounding yes. Their
idea begins with a combination of the binomial theo-
rem and Fermat’s little theorem. Given an integer a,
consider the polynomial (x+a)n and expand it in the
usual way through the binomial theorem. Each inter-
mediate term between the leading xn and the trailing
an has the coefficient n!/(j!(n−j)!) for some j between
1 and n − 1. If n is prime, then this coefficient, which
is an integer, is divisible by n because n appears as a
factor in the numerator that is not cancelled by any
factors in the denominator. That is, the coefficient is
0 (mod n). For example, (x + 1)7 is equal to

x7 + 7x6 + 21x5 + 35x4 + 35x3 + 21x2 + 7x + 1,

and we see each internal coefficient is a multiple of 7.
Thus, we have (x + 1)7 ≡ x7 + 1 (mod 7). (Two poly-
nomials are congruent mod n if corresponding coeffi-
cients are congruent mod n.) In general, if n is prime
and a is any integer, then via this binomial-theorem
idea and Fermat’s little theorem we have

(x + a)n ≡ xn + an ≡ xn + a (mod n).

It is an easy exercise to show that this congruence in
the simple case a = 1 is actually equivalent to pri-
mality. But as with the Wilson criterion we know no
way of quickly verifying that all these coefficients are
indeed divisible by n.

However, one can do more with polynomials than
raise them to powers. We can also divide one poly-
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nomial by another to find a quotient and a remain-
der, just as we do with integers. It makes sense, for
example, to say that g(x) ≡ h(x) (mod f(x)), mean-
ing that g(x) and h(x) leave the same remainder
when divided by f(x). We will write g(x) ≡ h(x)
(mod n, f(x)) if the remainders upon division by f(x)
are congruent mod n. As with the powermod algo-
rithm for integer congruences, we can quickly com-
pute g(x)n (mod n, f(x)), provided the degree of f(x)
is not too big. This is exactly what Agrawal et al.
propose. They have an auxiliary polynomial f(x) of
not-too-high degree such that, if

(x + a)n ≡ xn + a (mod n, f(x))

for each a = 1, 2, . . . , B, for a not-too-high bound B,
then n must be in a set that contains the primes and
certain composites that are easily recognized as com-
posites. (Not all composites are hard to recognize as
such, e.g., any number with a small prime factor is
easy to recognize.) These ideas put together form the
primality test of Agrawal et al. To give the argument
in full detail one has to specify the auxiliary poly-
nomial f(x) that is used and what the bound B is,
and one has to prove rigorously that it is exactly the
primes which pass the test.

Agrawal et al. (2004) show that the auxiliary poly-
nomial f(x) can be taken to be the beautifully sim-
ple xr − 1, with an elementary upper bound for r of
about (log n)5. Doing this leads to a time bound of
about (log n)10.5 for the algorithm. Using a numeri-
cally ineffective tool, they bring the time bound down
to (log n)7.5. Recently, Lenstra and Pomerance (forth-
coming) presented a not-so-simple but numerically
effective method of bringing the exponent on log n

down to 6. We did this by expanding the set of polyno-
mials used beyond those of the form xr − 1: in partic-
ular we used polynomials that are related to Gauss’s
famous algorithm for construction of certain regular
n-gons with straightedge and compass. It was indeed
satisfying to us to bring in a famous tool of Gauss
to say something about his problem of distinguishing
prime numbers from composite numbers.

Are the new polynomial-time primality tests good
in practice? So far, the answer is no, the competition
is just too tough. For example, using the arithmetic of
elliptic curves we can come up with bona fide proofs
of primality for huge numbers. This algorithm is con-
jectured to run in polynomial time but we have not

even proved that it always terminates. If, at the end
of the day, or in this case the end of the run, we have
a legitimate proof, then perhaps we can tolerate the
situation of not being sure that it would work out
when we started! The method, pioneered by Atkin and
Morain, has recently proved the primality of a num-
ber that has over 20000 decimal digits, and is not of
some special form such as 2n − 1 that makes testing
for primality easier. The record for the new breed of
polynomial-time tests is a measly 300 digits.

For numbers of certain special forms there are much
faster primality tests. Mersenne primes comprise the
most famous of these forms; these are primes that are
1 less than a power of 2. It is suspected that there
are infinitely many examples, but we seem to be very
far from a proof of this. Just 43 Mersenne primes are
known, the record example being 230402457−1, a prime
with more than 9.15 million decimal digits.

For much more on primality testing, and for ref-
erences to various other sources, see Crandall and
Pomerance (2005).

3 Factoring Composite Numbers

Compared with what we know about testing primality,
our ability to factor large numbers is still in the dark
ages. In fact this imbalance between the two problems
forms the bulwark for the security of electronic com-
merce on the Internet. (See public-key cryptogra-

phy for an account of why.) This is a very important
application of mathematics, but also an odd one, and
not something to brag about, since it depends on the
inability of mathematicians to efficiently solve a basic
problem!

Nevertheless, we do have our tricks. Part of the
landscape is Euclid’s algorithm for computing the
greatest common divisor (GCD) of two numbers. One
might naively think that, to find the GCD of two posi-
tive integers m and n, one should find all of their divi-
sors and pick the largest one common to the two. But
Euclid’s algorithm is much more efficient: the num-
ber of arithmetic steps is bounded by the logarithm of
the smaller number, so not only does it run in polyno-
mial time, it is in fact quite speedy. (See The Euclid-

ean algorithm and continued fractions for more
details.)
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So, if we can build up a special number m that may
be likely to have a nontrivial factor in common with n,
we can use Euclid’s algorithm to discover this factor.
For example, Pollard and Strassen (independently)
used this idea, together with fast subroutines for mul-
tiplication and polynomial evaluation, to enhance the
trial division method discussed in the last section.
Somewhat miraculously, one can take the integers up
to n1/2, break them into n1/4 subintervals of length
n1/4, and for each subinterval calculate the GCD of
n with the product of all the integers in the subin-
terval, spending only about n1/4 elementary steps in
total. If n is composite, then at least one GCD will
be larger than 1, and then a search over the first such
subinterval will locate a nontrivial factor of n. To date,
this algorithm is the fastest rigorous and deterministic
method of factoring that we know.

Most practical factoring algorithms are based on
unproved but reasonable-seeming hypotheses about
the natural numbers. Although we may not know how
to prove rigorously that these methods will always pro-
duce a factorization, or do so quickly, in practice they
do. This situation resembles the experimental sciences,
where hypotheses are tested against experiments. Our
experience with certain factoring algorithms is now
so overwhelming that a scientist might claim that a
physical law is involved. As mathematicians, we still
search for proof, but fortunately the numbers we fac-
tor do not feel the need to wait for us.

I often mention a contest problem from my high
school years: factor 8051. The trick is to notice that
8051 = 902−72 = (90−7)(90+7), from which the fac-
torization 83·97 can be read off. In fact every odd com-
posite can be factored as the difference of two squares,
an idea that goes back to Fermat. Indeed, if n has
the nontrivial factorization ab, then let u = 1

2 (a + b)
and v = 1

2 (a − b), so that n = u2 − v2, and a = u + v,
b = u − v. This method works very well if n has a
divisor very close to n1/2, as n = 8051 does, but in
the worst case, the Fermat method is slower than trial
division.

My quadratic sieve method (which follows work of
Kraitchik, Brillhart–Morrison, and Schroeppel) tries
to efficiently extend Fermat’s idea to all odd com-
posites. For example, take n = 1649. We start just
above n1/2 with j = 41, and consider the numbers
j2 − 1649. As j runs, we will eventually hit a value
where j2 − 1649 is a square, and so be able to use

Fermat’s method. Let’s try it:

412 − 1649 = 32,

422 − 1649 = 115,

432 − 1649 = 200,

...

Well, no squares yet, which is not surprising, since
the Fermat method is often very poor. But wait, do
the first and third lines not multiply together to give a
square? Yes they do, 32·200 = 802. So, multiplying the
first and third lines, and treating them as congruences
mod 1649, we have

(41 · 43)2 ≡ 802 (mod 1649).

That is, we have a pair u, v with u2 ≡ v2 (mod 1649).
This is not quite the same as having u2 − v2 = 1649,
but we do have 1649 a divisor of u2 −v2 = (u−v)(u+
v). Now maybe 1649 divides one of these factors, but
if it does not, then it is split between them, and so
a computation of the GCD of u − v (or u + v) with
1649 will reveal a proper factor. Now v = 80 and u =
41 ·43 ≡ 114 (mod 1649), and so we see instantly that
u �≡ ±v (mod 1649), so we are in business. The GCD
of 114−80 = 34 with 1649 is 17. Dividing, we see that
1649 = 17 · 97, and we are done.

Can we generalize this? In trying to factor n = 1649
we considered consecutive values of the quadratic
polynomial f(j) = j2 −n for j starting just above

√
n,

and viewed these as congruences j2 ≡ f(j) (mod n).
Then we found a set M of numbers j with

∏
j∈M f(j)

equal to a square, say v2. We then let u =
∏

j∈M j, so
that u2 ≡ v2 (mod n). Since u �≡ ±v (mod n), we
could split n via the GCD of u − v and n.

There is another lesson that we can learn from our
small example with n = 1649. We used 32 and 200
to form our square, but we ignored 115. If we had
thought about it, we might have noticed from the
start that 32 and 200 were more likely to be use-
ful than 115. The reason is that that 32 and 200
are smooth numbers (meaning that they have only
small prime factors), while 115 is not smooth, hav-
ing the relatively large prime factor 23. Say you have
k + 1 positive integers that involve in their prime
factorizations only the first k primes. It is an easy
theorem that some nonempty subset of these num-
bers has product a square. The proof has us asso-
ciate with each of these numbers, which can be writ-
ten in the form pa1

1 pa2
2 · · · pak

k , an exponent vector
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(a1, a2, . . . , ak). Since squares are detected by all even
exponents, we really only care whether the exponents
ai are odd or even. Thus, we think of these vectors
as having coordinates 0 and 1, and when we add
them (which corresponds to multiplying the under-
lying numbers), we do so mod 2. Since we have k + 1
vectors, each with only k coordinates, an easy matrix
calculation leads quickly to a nonempty subset that
adds up to the 0-vector. The product of the corre-
sponding integers is then a square.

In our toy example with n = 1649, the first and
third numbers, which are 32 = 253050 and 200 =
233052, have exponent vectors (5, 0, 0) and (3, 0, 2),
which reduce to (1, 0, 0) and (1, 0, 0), so we see that the
sum of them is (0, 0, 0), which indicates that we have
a square. We were lucky that we could make do with
just two vectors, instead of the four that the above
argument shows would be sufficient.

In general with the quadratic sieve, one finds
smooth numbers in the sequence j2 − n, forms the
exponent vectors mod 2, and then uses a matrix to
find a nonempty subset which adds up to the 0-vector,
which then corresponds to a set M where

∏
j∈M f(j)

is a square.
In addition, the “sieve” in the quadratic sieve comes

in with the search for smooth values of f(j) = j2 − n.
These numbers are the consecutive values of a (quad-
ratic) polynomial, so those divisible by a given prime
can be found in regular places in the sequence. For
example, in our illustration, j2 −1649 is divisible by 5
precisely when j ≡ 2 or 3 (mod 5). A sieve, very much
like the sieve of Eratosthenes, can then be used to
efficiently find the special numbers j where j2 − n is
smooth. A key issue though is how smooth a value f(j)
has to be for us to decide to accept it. If we choose
a smaller bound for the primes involved, we do not
have to find all that many of them to use the matrix
method. But such very smooth values might be very
rare. If we use a larger bound for the primes involved,
then smooth values of f(j) may be more common,
but we will need many of them. Somewhere between
smaller and larger is just right! In order to make the
choice, it would help to know how frequently values
of an irreducible quadratic polynomial are smooth.
Unfortunately, we do not have a theorem that tells
us, but we can still make a good choice by assuming
that this frequency is about that for a random num-

ber of the same size, an assumption that is probably
correct even if it is hard to prove.

Finally, note that if the final GCD yields only a
trivial factor with n, one can continue just a bit longer
and find more linear dependencies, each with a fresh
chance at splitting n.

These thoughts lead us to a time bound of about

exp(
√

log n log log n )

for the quadratic sieve to factor n. Instead of being
exponential in the number of digits of n, as with trial
division, this is exponential in about the square root
of the number of digits of n. This is certainly a huge
improvement, but it is still a far cry from polynomial
time.

Lenstra and I actually have a rigorous random fac-
toring method with the same time complexity as that
above for the quadratic sieve. (It is random in the
sense that a coin is flipped at various junctures, and
decisions on what to do next depend on the outcomes
of these flips. Through this process, we expect to get
a bona fide factorization within the advertised time
bound.) However, the method is not so computer prac-
tical, and if you had to choose in practice between the
two, then you should go with the nonrigorous quad-
ratic sieve. A triumph for the quadratic sieve was the
1994 factorization of the 129-digit RSA cryptographic
challenge first published in Martin Gardner’s column
in Scientific American in 1977.

The number field sieve, which is another sieve-based
factoring algorithm, was discovered in the late 1980s
by Pollard for integers close to powers, and later devel-
oped by Buhler, Lenstra and me for general integers.
The method is similar in spirit to the quadratic sieve,
but assembles its squares from the product of certain
sets of algebraic integers. The number field sieve has
a conjectured time complexity of the type

exp(c(log n)1/3(log log n)2/3),

for a value of c slightly below 2. For composite num-
bers beyond 100 digits or so that have no small prime
factor, it is the method of choice, with the current
record being 200 decimal digits.

The sieve-based factorization methods share the
property that if you use them, then all composite num-
bers of about the same size are equally hard to factor.
For instance, factoring n will be about as difficult if
n is a product of five primes each roughly near the
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fifth root of n as it will be if n is a product of two
primes roughly near the square root of n. This is quite
unlike trial division, which is happiest when there is a
small prime factor. We will now describe a famous fac-
torization method due to Lenstra that detects small
prime factors before large ones, and beyond baby cases
is much superior to trial dividing. This is his elliptic
curve method.

Just as the quadratic sieve searches for a number
m with a nontrivial GCD with n, so does the ellip-
tic curve method. But where the quadratic sieve (and
the number field sieve) painstakingly build up to a
successful m from many small successes, the elliptic
curve method hopes to hit upon m with essentially
one lucky choice.

Choosing random numbers m and testing their
GCD with n can also have instant success, but you
can well imagine that if n has no small prime factors,
then the expected time for success would be enormous.
Instead, the elliptic curve method involves consider-
ably more cleverness.

Consider first the “p − 1 method” of Pollard. Sup-
pose you have a number n you wish to factor and a
certain large number k. Unbeknownst to you, n has a
prime factor p with p − 1 a divisor of k, and another
prime factor q with q − 1 not a divisor of k. You can
use this imbalance to split n. First of all, by Fermat’s
little theorem there are many numbers u with uk ≡ 1
(mod p) and uk �≡ 1 (mod q). Say you have one of
these, and let m be uk − 1 reduced mod n. Then the
GCD of m and n is a nontrivial factor of n; it is divisi-
ble by p but not by q. Pollard suggests taking k as the
least common multiple of the integers to some mod-
erate bound so that it has many divisors and perhaps
a decent chance that it is divisible by p − 1. The best
case of Pollard’s method is when n has a prime factor
p with p − 1 smooth (has all small prime factors—see
the quadratic sieve discussion above). But if n has no
prime factors p with p − 1 smooth, Pollard’s method
fares poorly.

What is going on here is that corresponding to the
prime p we have the multiplicative group of the p − 1
nonzero residues mod p. Furthermore, when doing
arithmetic mod n with numbers relatively prime to
n, we are, whether we realize it or not, doing arith-
metic in this group. We are exploiting the fact that uk

is the group identity mod p, but not mod q.

Lenstra had the brilliant idea of using the Pollard
method in the context of elliptic curve groups.
There are many elliptic curve groups associated with
the prime p, and therefore many chances to hit upon
one where the number of elements is smooth. Of great
importance here are theorems of Hasse and Deuring.
An elliptic curve mod p (for p > 3) can be taken as
the set of solutions to the congruence y2 ≡ x3 +ax+ b

(mod p), for given integers a, b with the property that
x3 +ax+b does not have repeated roots mod p. There
is one additional “point at infinity” thrown in (see
below). A fairly simple addition law (but not as sim-
ple as adding coordinatewise!) makes the elliptic curve
into a group, with the point at infinity as the identity.
Hasse, in a result later generalized by Weil with his
famous proof of the “Riemann hypothesis for curves,”
showed us that the number of elements in the ellip-
tic curve group always lies between p + 1 − 2

√
p and

p + 1 + 2
√

p. And Deuring proved that every number
in this range is indeed associated with some elliptic
curve mod p.

Say we randomly choose integers x1, y1, a, and
then choose b so that y2

1 is congruent to x3
1 + ax1 + b

(mod n). This gives us the curve with coefficients a, b

and a point P = (x1, y1) on the curve. One can then
mimic the Pollard strategy, with a number k as before
with many divisors, and with the point P playing the
role of u. Let kP denote the k-fold sum of P added to
itself using elliptic curve addition. If kP is the point at
infinity on the curve considered mod p (which it will
be if the number of points on the curve is a divisor of
k), but not on the curve considered mod q, then this
gives us a number m whose GCD with n is divisible
by p and not by q. We will have factored n.

To see where m comes from it is convenient to con-
sider the curve projectively: we take solutions (x, y, z)
of the congruence y2z ≡ x3 + axz2 + bz3 (mod p).
The triple (cx, cy, cz) when c �= 0 is considered to be
the same as (x, y, z). The mysterious point at infin-
ity is now demystified; it is just (0, 1, 0). And our
point P is (x1, y1, 1). (This is the mod p version of
classical projective geometry which is described
in Section ?? of Some Fundamental Mathemati-

cal Definitions.) Say we work mod n and compute
the point kP = (xk, yk, zk). Then the candidate for
the number m is just zk. Indeed, if kP is the point at
infinity mod p, then zk ≡ 0 (mod p), and if it is not
the point at infinity mod q, then zk �≡ 0 (mod q).
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When Pollard’s p−1 method fails, our only recourse
is to raise k or give up. With the elliptic curve method,
if things do not work for our randomly chosen curve,
we can pick another. Corresponding to the hidden
prime p in n, we are actually picking new elliptic
curve groups mod p, and so gaining a fresh chance for
the number of elements in the group to be smooth.
The elliptic curve method has been quite successful
in factoring numbers which have a prime factor up to
about 50 decimal digits, and even occasionally some-
what larger primes have been discovered.

We conjecture that the expected time for the elliptic
curve method to find the least prime factor p of n is
about

exp(
√

2 log p log log p )

arithmetic operations mod n. What is holding us back
from proving this conjecture is not lack of knowledge
about elliptic curves, but rather lack of knowledge of
the distribution of smooth numbers.

For more on these and other factorization meth-
ods, the reader is referred to Crandall and Pomerance
(2005).

4 The Riemann Hypothesis and the
Distribution of the Primes

As a teenager looking at a modest table of primes,
Gauss conjectured that their frequency decays loga-
rithmically and that li(x) =

∫ x

2 dt/ log t should be a
good approximation for π(x), the number of primes
between 1 and x. Sixty years later, Riemann showed
how Gauss’s conjecture can be proved if one assumes
that the Riemann zeta function ζ(s) =

∑
n n−s has no

zeros in the complex half-plane where the real part of
s is greater than 1

2 . The series for ζ(s) converges only
for Re s > 1, but it may be analytically continued to
Re s > 0, with a simple pole at s = 1. (For a brief
description of the process of analytic continuation,
see Section ?? of Some fundamental definitions.)
This continuation may be seen quite concretely
via the identity ζ(s) = s/(s − 1) − s

∫ ∞
1 {x}x−s−1 dx,

with {x} the fractional part of x (so that {x} =
x − [x]): note that this integral converges quite nicely
in the half-plane Re s > 0. In fact, via Riemann’s func-
tional equation mentioned below, ζ(s) can be contin-
ued to a meromorphic function in the whole complex
plane, with the single pole at s = 1.

The assertion that ζ(s) �= 0 for Re s > 1
2 is known

as the Riemann hypothesis; arguably it is the most
famous unsolved problem in mathematics. Though
Hadamard and de la Vallee Poussin were able in
1896 to prove (independently) a weak form of Gauss’s
conjecture known as the prime number theorem,
the apparent breathtaking strength of the approxi-
mation li(x) to π(x) is uncanny. For example, take
x = 1022. We have

π(1022) = 201467286689315906290

exactly, and, to the nearest integer, we have

li(1022) ≈ 201467286691248261497.

As you can plainly see, Gauss’s guess is right on the
money!

The numerical computation of li(x) is simple via
numerical methods for integration, and it is directly
obtainable in various mathematics computing pack-
ages. However, the computation of π(1022) (due to
Gourdon) is far from trivial. It would be far too labo-
rious to count these approximately 2 × 1020 primes
one by one, so how are they counted? In fact, we have
various combinatorial tricks to count without listing
everything. For example, one does not need to count
one by one to see that there are exactly 2[1022/6] + 1
integers in the interval from 1 to 1022 that are rel-
atively prime to 6. Rather one thinks of these num-
bers grouped in blocks of six, with two in each block
coprime to 6. (The “+1” comes from the partial block
at the end.) Building on early ideas of Meissel and
Lehmer, Lagarias, Miller, and Odlyzko presented an
elegant combinatorial method for computing π(x) that
takes about x2/3 elementary steps. The method was
refined by Deléglise and Rivat, and then Gourdon
found a way to distribute the computation to many
computers.

From work of von Koch, and later Schoenfeld, we
know that the Riemann hypothesis is equivalent to
the assertion that

|π(x) − li(x)| <
√

x log x (1)

for all x � 3 (see Crandall and Pomerance 2005, Exer-
cise 1.37). Thus, the mammoth calculation of π(1022)
might be viewed as computational evidence for the
Riemann hypothesis—in fact, if the count had turned
out to violate (1), we would have had a disproof.
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It may not be obvious what (1) has to do with
the location of the zeros of ζ(s). To understand the
connection, let us first dismiss the so-called “triv-
ial” zeros, which occur at each negative even inte-
ger. The nontrivial zeros ρ are known to be infi-
nite in number, and, as mentioned above, are con-
jectured to satisfy Re ρ � 1

2 . There are certain sym-
metries among these zeros: indeed, if ρ is a zero,
then so are ρ̄, 1 − ρ, and 1 − ρ̄. Therefore, the Rie-
mann hypothesis is the assertion that every nontrivial
zero has real part equal to 1

2 . (The symmetry with ρ

and 1 − ρ, which follows from Riemann’s functional
equation ζ(1 − s) = 2(2π)−s cos( 1

2πs)Γ (s)ζ(s), per-
haps provides some heuristic support for the Riemann
hypothesis.)

The connection to prime numbers begins with the
fundamental theorem of arithmetic, which yields the
identity

ζ(s) =
∞∑

n=1

n−s =
∏

p prime

∞∑

j=0

p−js

=
∏

p prime

(1 − p−s)−1,

a product that converges when Re s > 1. Thus, taking
the logarithmic derivative (that is, taking the loga-
rithm of both sides and then differentiating), we have

ζ′(s)
ζ(s)

= −
∑

p prime

log p

ps − 1
= −

∑

p prime

∞∑

j=1

log p

pjs
.

That is, if we define Λ(n) to be log p if n = pj for a
prime p and an integer j � 1, and Λ(n) = 0 if n is not
of this form, then we have the identity

∞∑

n=1

Λ(n)
ns

= −ζ′(s)
ζ(s)

.

Through various relatively routine calculations, one
can then relate the function

ψ(x) =
∑

n�x

Λ(n)

to the residues at the poles of ζ′/ζ, which correspond
to the zeros (and single pole) of ζ. In fact, as Riemann
showed, we have the following beautiful formula:

ψ(x) = x −
∑

ρ

xρ

ρ
− log(2π) − 1

2 log(1 − x−2)

if x itself is not a prime or prime power, and where the
sum over the nontrivial zeros ρ of ζ is to be understood

in the symmetric sense where we sum over those ρ

with | Im ρ| < T and let T → ∞. Through elementary
manipulations, an understanding of the function ψ(x)
readily gives an equivalent understanding of π(x), and
it should be clear now that ψ(x) is intimately con-
nected to the nontrivial zeros ρ of ζ.

The function ψ(x) defined above has a simple inter-
pretation. It is the logarithm of the least common
multiple of the integers in the interval [1, x]. As with
(1) we have an elementary translation of the Riemann
hypothesis: it is equivalent to the assertion that

|ψ(x) − x| <
√

x log2 x

for all x � 3. This inequality involves only the ele-
mentary concepts of least common multiple, natural
logarithm, absolute value, and square root, yet it is
equivalent to the Riemann hypothesis.

A number of nontrivial zeros ρ of ζ(s) have actually
been calculated and it has been verified that they lie
on the line Re s = 1

2 . One might wonder how some-
one can computationally verify that a complex num-
ber ρ has Re ρ = 1

2 . For example, suppose that we
are carrying calculations to (an unrealistically large)
1010 significant digits, and suppose we come across
a zero with real part 1

2 + 10−10100
. It would be far

beyond the precision of the calculation to be able to
distinguish this number from 1

2 itself. Nevertheless,
we do have a method for seeing if particular zeros ρ

satisfy Re ρ = 1
2 . There are two ideas involved, one

of which comes from elementary calculus. If we have
a continuous real-valued function f(x) defined on the
real numbers, we can sometimes use the intermedi-
ate value theorem to count zeros. For example, say
f(1) > 0, f(1.7) < 0, f(2.3) > 0. Then we know for
sure that f has at least one zero between 1 and 1.7,
and at least one zero between 1.7 and 2.3. If we know
for other reasons that f has exactly two zeros, then
we have accounted for both of them. To locate zeros of
the complex function ζ(s), a real-valued function g(t)
is constructed with the property that ζ( 1

2 + it) = 0 if
and only if g(t) = 0. By looking at sign changes for g(t)
for 0 < t < T , we can get a lower bound for the num-
ber of zeros ρ of ζ with Re ρ = 1

2 and 0 < Im ρ < T .
In addition, we can use the so-called argument princi-
ple from complex analysis to count the exact number
of zeros with 0 < Im ρ < T . If we are lucky and this
exact count is equal to our lower bound, then we have
accounted for all of ζ’s zeros here, showing that they
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all have real part 1
2 (and, in addition, that they are all

simple zeros). If the counts did not match, it would not
be a disproof of the Riemann hypothesis, but certainly
it would indicate a region where we should be check-
ing the data more closely. So far, whenever we have
tried this approach, the counts have matched, though
sometimes we have been forced to evaluate g(t) at very
closely spaced points.

The first few nontrivial zeros were computed by Rie-
mann himself. The famous cryptographer and early
computer scientist Turing also computed some zeta
zeros. The current record for this kind of calculation
is held by Gourdon, who has shown that the first 1013

zeta zeros with positive imaginary part all have real
part equal to 1

2 , as predicted by Riemann. Gourdon’s
method is a modification of that pioneered by Odlyzko
and Schönhage (1988), who ushered in the modern age
of zeta-zero calculations.

Explicit zeta-function calculations can lead to
highly useful explicit prime number estimates. If pn is
the nth prime, then the prime number theorem implies
that pn ∼ n log n as n → ∞. Actually, there is a sec-
ondary term of order n log log n, and so for all suffi-
ciently large n, we have pn > n log n. By using explicit
zeta estimates, Rosser was able to put a numerical
bound on the “sufficiently large” in this statement,
and then by checking small cases, was able to prove
that in fact pn > n log n for every n. The paper of
Rosser and Schoenfeld (1962) is filled with highly use-
ful and numerically explicit inequalities of this kind.

Let us imagine for a moment that the Riemann
hypothesis had been proved. Mathematics is never
“used up,” there is always that next problem around
the bend. Even if we know that all of zeta’s nontrivial
zeros lie on the line Im s = 1

2 , we can still ask how
they are distributed on this line. We have a fairly con-
cise understanding of how many zeros there should be
up to a given height T . In fact, as already found by
Riemann, this count is about (1/2π)T log T . Thus, on
average, the zeros would tend to get closer and closer
with about (1/2π) log T of them in a unit interval near
height T .

This tells us the average distance, or spacing,
between one zeta zero and the next, but there is much
more that one can ask about how these spacings are
distributed. In order to discuss this question, it is very
convenient to “normalize” the spacings, so that the
average (normalized) gap between consecutive zeros

is 1. By Riemann’s result, together with our assump-
tion of the Riemann hypothesis, this can be done if
we multiply a gap near T by (1/2π) log T , or, equiva-
lently, if for each zero ρ we replace its imaginary part
t = Im ρ by (1/2π)t log t. In this way we arrive at a
sequence δ1, δ2, . . . of normalized gaps between con-
secutive zeros, which on average are about 1.

Checking numerically, we see that some δn are large,
with others close to 0; it is just the average that is 1.
Mathematics is well equipped to study random phe-
nomena, and we have names for various probability

distributions, such as Poisson, Gaussian, etc. Is this
what is happening here? These zeta zeros are not ran-
dom at all, but perhaps thinking in terms of random-
ness has promise.

In the early twentieth century, Hilbert and Pólya
suggested that the zeros of the zeta function might
correspond to the eigenvalues of some operator. Now
this is provocative! But what operator? Some 50 years
later in a now famous conversation between Dyson
and Montgomery at the Institute for Advanced Study,
it was conjectured that the nontrivial zeros behave
like the eigenvalues of a random matrix from the so-
called Gaussian unitary ensemble. This conjecture,
now known as the GUE conjecture, can be numeri-
cally tested in various ways. Odlyzko has done this,
and found persuasive evidence for the conjecture: the
higher the batches of zeros one looks at, the more
closely their distribution corresponds to what the
GUE conjecture predicts.

For example, take the 1041417089 numbers δn with
n starting at 1023 + 17368588794. (The imaginary
parts of these zeros are around 1.3 × 1022.) For each
interval (j/100, (j + 1)/100] we can compute the pro-
portion of these normalized gaps that lie in this inter-
val, and plot it. If we were dealing with eigenvalues
from a random matrix from the GUE, we would expect
these statistics to converge to a certain distribution
known as the Gaudin distribution (for which there is
no closed formula, but which is easily computable).
Odlyzko has kindly supplied me with the graph in Fig-
ure 1, which plots the Gaudin distribution against the
data just described (but leaves out every second data
point to avoid clutter). Like pearls on a necklace! The
fit is absolutely remarkable.

The vital interplay of thought experiments and
numerical computation has taken us to what we feel
is a deeper understanding of the zeta function. But
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where do we go next? The GUE conjecture suggests
a connection to random matrix theory, and pursuing
further connections seems promising to many. It may
be that random matrix theory will allow us only to
formulate great conjectures about the zeta function,
and will not lead to great theorems. But then again,
who can deny the power of a glimpse at the truth? We
await the next chapter in this development.

5 Diophantine Equations and the abc

Conjecture

Let us move now from the Riemann hypothesis to
Fermat’s last theorem. Until the last decade it
too was one of the most famous unsolved problems
in mathematics, once even having a mention on a
Star Trek episode. The assertion is that the equation
xn + yn = zn has no solutions in positive integers x,
y, z, n, where n � 3. This conjecture had remained
unproved for three-and-a-half centuries until Andrew
Wiles published a proof in 1995. In addition, perhaps
more important than the solution of this particular
Diophantine equation (that is, an equation where the
unknowns are restricted to the integers), the centuries-
long quest for a proof helped establish the field of
algebraic number theory. And the proof itself

established a long-sought and wonderful connection
between modular forms and elliptic curves.

But do you know why Fermat’s last theorem is true?
That is, just in case you are not an expert on all of the
intricacies of the proof, are you surprised that there
are in fact no solutions? In fact, there is a fairly simple
heuristic argument that supports the assertion. First
note that the case n = 3, namely x3 + y3 = z3, can
be handled by elementary methods, and this in fact
had already been done by Euler. So, let us focus on
the cases when n � 4.1 Let Sn be the set of positive
nth powers of integers. How likely is it that the sum
of two members of Sn is itself a member of Sn? Well,
not at all likely, since Wiles has proved that this never
occurs! But recall that we are trying to think naively.

Let us try to mimic our situation by replacing the
set Sn with a random set. In fact, we will throw all of
the powers together into one set. Following an idea of
Erdős and Ulam (1971) we create a set R by a random
process: each integer m is considered independently,
and the chance it gets thrown into R is proportional
to m−3/4. This process would typically give us about
x1/4 numbers in R in the interval [1, x], or at least
this would be the order of magnitude. Now the total
number of fourth and higher powers between 1 and x

is also about x1/4, so we can take our random set R as
modelling the situation for these powers, namely the
union of all sets Sn for n � 4. We ask how likely it is
to have a + b = c where a, b, c all come from R.

The probability that a number m may be repre-
sented as a + b where 0 < a < b < m and a, b ∈ R
is proportional to

∑
0<a<m/2 a−3/4(m − a)−3/4, since

for each a less than m the probability that a and m−a

both lie in R is a−3/4(m − a)−3/4. Actually, there is
a minor caveat when m is even, since then a = m − a

when a = 1
2m: to cover this, we add the single term

( 1
2m)−3/4 to the above sum. Replacing each m − a in

the sum with 1
2m, we get a larger sum that is easy to

estimate and turns out to be proportional to m−1/2.
That is, the chance that a random number m is a sum
of two members of R is at most a certain quantity that
is proportional to m−1/2. Now the events that would
have to occur for m to be given as such a sum involve
numbers smaller than m, so the event that m itself
is in R is independent of these. Therefore, the proba-
bility that m is not only the sum of two members of

1. Actually, Fermat himself had a simple proof in the case n = 4,
but we ignore this.
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R, but also itself a member of R, is at most a quan-
tity proportional to m−1/2m−3/4 = m−5/4. So now we
can count how many times we should expect a sum of
two members of R to itself be a member of R. This is
at most a constant times

∑
m m−5/4. But this sum is

convergent, so we expect only finitely many examples.
Further, since the tail of a convergent series is tiny, we
do not expect any large examples.

Thus, this argument suggests that there are at most
finitely many positive integer solutions to

xu + yv = zw, (2)

where the exponents u, v, w are at least 4. Since Fer-
mat’s last theorem is the special case when u = v = w,
we would have at most finitely many counterexamples
to that as well.

This seems tidy enough, but now we get a surprise!
There are actually infinitely many solutions to (2)
in positive integers with u, v, w all at least 4. For
example, note that 174 + 344 = 175. This is the case
a = 1, b = 2, u = 4 of a more general identity: if
a, b are positive integers, and c = au + bu, we have
(ac)u + (bc)u = cu+1. Another way to get infinitely
many examples is to build on the possible existence
of just one example. If x, y, z, u, v, w are positive
integers satisfying (2), then with the same exponents,
we may replace x, y, z with avwx, auwy, auvz for any
integer a, and so get infinitely many solutions.

The point is that events of the kind that we are
considering—that a given integer is a power—are not
quite independent. For instance, if A and B are both
uth powers, then so is AB, and this idea is exploited
in the infinite families just mentioned.

So how do we neatly bar these trivialities and come
to the rescue of our heuristic argument? One simple
way to do this is to insist that the numbers x, y, z in
(2) be relatively prime. This gives no restriction what-
soever in the Fermat case of equal exponents, since a
solution to xn + yn = zn with d the greatest com-
mon divisor of x, y, z leads to the coprime solution
(x/d)n + (y/d)n = (z/d)n.

Concerning Fermat’s last theorem, one might ask
how far it had actually been verified before the
final proof by Wiles. The paper by Buhler et al.
(1993) reports a verification for all exponents n up to
4000000. This type of calculation, which is far from
trivial, has its roots in nineteenth century work of

Kummer and early twentieth century work of Van-
diver. In fact, Buhler et al. (1993) also verify in the
same range a related conjecture of Vandiver dealing
with cyclotomic fields, but this conjecture may in fact
be false in general.

The probabilistic thinking above, combined with
computation of small cases, can carry us deeply into
some very provocative conjectures. The above prob-
abilistic argument can easily be extended to suggest
that (2) has at most finitely many relatively prime
solutions x, y, z over all possible exponent triples u,
v, w with 1/u + 1/v + 1/w < 1. This conjecture has
come to be known as the Fermat–Catalan conjecture,
since it contains within it essentially Fermat’s last the-
orem and also the Catalan conjecture (recently proved
by Mihăilescu) that 8 and 9 are the only consecutive
powers.

It is good that we do allow for the possibility that
there are some solutions, and this is where our main
topic of computing comes in. For example, since 1 +
8 = 9, we have a solution to x7 + y3 = z2, where
x = 1, y = 2, and z = 3. (The exponent 7 is chosen to
insure that the reciprocal sum of the exponents is less
than 1. Of course, we could replace 7 by any larger
integer, but since in each case the power involved is
the number 1, they should all together be considered
as just one example.) Here are the known solutions to
(2):

1n + 23 = 32,

25 + 72 = 34,

132 + 73 = 29,

27 + 173 = 712,

35 + 114 = 1222,

338 + 15490342 = 156133,

14143 + 22134592 = 657,

92623 + 153122832 = 1137,

177 + 762713 = 210639282,

438 + 962223 = 300429072.

The larger members were found in an exhaustive com-
puter search by Beukers and Zagier. Perhaps this is
the complete list of all solutions, or perhaps not—we
have no proof.

However, for particular choices of u, v, w, more can
be said. Using results from a famous paper of Faltings,
Darmon and Granville (1995) have shown that for any
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fixed choice of u, v, w with reciprocal sum at most 1,
there are at most finitely many coprime triples x, y, z

solving (2). For a particular choice of exponents, one
might try to actually find all of the solutions. If it can
be handled at all, this task can involve a delicate inter-
play between arithmetic geometry, effective meth-
ods in transcendental number theory, and good
hard computing. In particular, the exponent triple sets
{2, 3, 7}, {2, 3, 8}, {2, 3, 9}, and {2, 4, 5} are known to
have all their solutions in the above table. See Poo-
nen et al. (forthcoming) for the treatment of the case
{2, 3, 7} and links to other work.

The “abc conjecture” of Oesterlé and Masser is
deceptively simple. It involves positive integer solu-
tions to the equation a + b = c, hence the name. To
put some meaning into a + b = c, we define the “radi-
cal” of a nonzero integer n as the product of the primes
that divide n, denoting this as rad(n). So, for exam-
ple, rad(10) = 10, rad(72) = 6, and rad(65536) = 2.
In particular, high powers have small radicals in com-
parison to the number itself, and so do many other
numbers. Basically, the abc conjecture asserts that if
a + b = c, then the radical of abc cannot be too small.
More specifically we have the following.

The abc conjecture. For each ε > 0 there are at
most finitely many relatively prime positive integer
triples a, b, c with a + b = c and rad(abc) < c1−ε.

Note that the abc conjecture immediately solves the
Fermat–Catalan problem. Indeed if u, v, w are positive
integers with 1/u + 1/v + 1/w < 1, then it is easily
found that we must have 1/u + 1/v + 1/w � 41/42.
Suppose we have a coprime solution to (2). Then x �
zw/u and y � zw/v, so that

rad(xuyvzw) � xyz � (zw)41/42.

Thus, the abc conjecture with ε = 1/42 implies that
there are at most finitely many solutions.

The abc conjecture has many other marvelous con-
sequences; for a delightful survey, see Granville and
Tucker (2002). In fact, the abc conjecture and its
generalizations can be used to prove so many things
that I have joked that it is beginning to resemble a
false statement, since a false statement implies every-
thing. But probably the abc conjecture is true. Indeed,
though a bit harder to see, the Erdős–Ulam proba-
bilistic argument can be modified to provide heuristic
evidence for it too.

Basic to this argument is a perfectly rigorous result
on the distribution of integers n for which rad(n) is
below some bound. These ideas are worked through
in the thesis of van Frankenhuijsen and also the new
paper by Stewart and Tenenbaum (forthcoming). Here
is a slightly weaker statement than the one suggested
by these authors: if a + b = c are relatively prime
positive integers and c is sufficiently large, then we
have

rad(abc) > c1−1/
√

log c. (3)

One might wonder how the numerical evidence
stacks up against (3). This inequality asserts that
if rad(abc) = r, then log(c/r)/

√
log c < 1. So, let

T (a, b, c) denote the test statistic log(c/r)/
√

log c. A
website maintained by Nitaj (www.math.unicaen.fr/

˜nitaj/abc.html) contains a wealth of information
about the abc conjecture. Checking the data, there are
quite a few examples with T (a, b, c) � 1, the champion
so far being

a = 72 · 412 · 3113 = 2477678547239

b = 1116 · 132 · 79 = 613474843408551921511

c = 2 · 33 · 523 · 953 = 613474845886230468750

r = 2 · 3 · 5 · 7 · 11 · 13 · 41 · 79 · 311 · 953

= 28828335646110,

so that

T (a, b, c) =
log(c/r)√

log c
= 2.43886 . . . .

Is it always true that T (a, b, c) < 2.5?
One can get carried away with heuristics, forgetting

that one is not actually proving a theorem, but mak-
ing a guess. Heuristics are often based on the idea of
randomness, and all bets are off if there is some under-
lying structure. But how do we know that there is no
underlying structure? Consider the case of an “abcd

conjecture.” Here we consider integers a, b, c, d with
a+b+c+d = 0. The condition that the terms be rela-
tively prime now takes on two possible meanings: pair-
wise relatively prime or no nontrivial common divisor
of all four numbers. The first condition seems more
in the spirit of the three-term conjecture, but may be
a tad too strong in that it disallows using any even
numbers. So say we take the four terms with no pair
having a common factor greater than 2. Under this
condition, our heuristics seem to suggest that for each
ε > 0, we have

rad(abcd)1+ε < max{|a|, |b|, |c|, |d|} (4)
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for at most finitely many cases. But consider the poly-
nomial identity

(x + 1)5 = (x − 1)5 + 10(x2 + 1)2 − 8

(suggested to me by Granville). If we take x as a mul-
tiple of 10, the four terms involved in the identity are
pairwise relatively prime except for the last two, which
have a common factor of 2. Let x = 11k − 1, which is
a multiple of 10. The largest of the four terms is 115k,
and the radical of the product of the four terms is at
most

110(11k − 2)((11k − 1)2 + 1) < 110 · 113k.

The heuristics are saying that this cannot be, yet here
it is right before our eyes!

What is happening is that the polynomial identity is
supplying an underlying structure. For the four-term
abcd conjecture, Granville conjectures that for each
ε > 0, all counterexamples to (4) come from at most
finitely many polynomial families. And the number of
polynomial families grows to infinity as ε shrinks to 0.

We have looked here at only a small portion of
the field of Diophantine equations, and then we have
looked mainly at the dynamic relationship between
heuristics and computational searches for small solu-
tions. For much more on the subject of computational
Diophantine methods, see Smart (1998).

Heuristic arguments often assume that the objects
of study behave as if they were random, and we have
visited several cases where it is useful to think this
way. Other examples include the twin-prime conjec-
ture (there are infinitely many primes p such that p+2
is prime), Goldbach’s conjecture (every even number
larger than 2 is the sum of two primes), and countless
other conjectures in number theory. Often the compu-
tational evidence for the probabilistic view is striking,
even overwhelming, and we become convinced in the
truth of our model. But on the other hand, if it is this
pseudo-proof that is all we have to go on, we may still
be very far from the truth. Nevertheless, the interplay
of computations and heuristic thinking form an indis-
pensable part of our arsenal, and mathematics is the
richer for it.
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