
Chance in the Primes - Part III

This is the third and final issue of our series meant to assist in listening to Peter Sarnak's lecture on the Riemann Hypothesis available at the MSRI website.
Parts I and II related to the first part of Sarnak's talk in which Sarnak discusses the history of the Riemann Hypothesis. In the second part of his talk, Sarnak
discussed the remarkable connections between the zeros of the zeta function, energy levels in quantum theory, and the eigenvalues of random matrices. Here we
will provide some background information for understanding these connections. This part was written jointly by Dan Rockmore and Laurie Snell with a lot of
help with programming from Peter Kostelec and Charles Grinstead.

It all begins with a chance meeting at Princeton's Institute for Advanced Study between number theorist Hugh Montgomery, a visitor from the University of
Michigan to the Institute's School of Mathematics, and Freeman Dyson, a member of the Institute's Faculty of the School of Natural Sciences, the same
department which claimed Albert Einstein as one of its first members. Dyson is perhaps best known as the mathematical physicist who turned Feynman
diagrams, the intuitive and highly personal computational machinery of Richard Feynman, into rigorous mathematics, thereby laying the mathematical
foundations for a working theory of quantum electrodynamics.

Montgomery had been working for some time on various aspects of the Riemann Hypothesis. In particular he had been investigating the pair correlation of the
zeros which we now describe.

Recall that the Prime Number Theorem states that, if  is the number of primes not exceeding , then 

(1)

It follows from this that if  is the nth prime then 

(2)

A proof of (2) can be found in [1] page 10. Thus the primes get further apart and the nth prime becomes significantly bigger than  as . Exactly the
opposite happens with the zeros of the zeta function.

Recall that the non-trivial zeros of the zeta function all lie in the critical strip of the complex plane:

Figure 1: The critical strip.

Let  be the number of zeros in the upper half of the critical strip with imaginary part at most T. Of course, if the Riemann Hypothesis (RH) is true then the

zeros in the critical strip all lie on the line  Then the analog of the prime number theorem for N(T) is 

(3)

known apparently even to Riemann.

We now assume the RH and denote by  the imaginary parts of the first n zeros in the critical region. Then it follows from (3) that 

(4)

For a proof of (4) see [2] section 9.3. Thus, while the primes get less dense as , the zeros of the zeta function get more dense as .

Montgomery studied the consecutive spacings  between the zeros. He effectively spread them out to obtain normalized spacings  with mean

spacing asymptotically 1. There are two ways that we can do this. We can normalize the zeros in such a way that the gaps will have their mean asymptotically 1
or we can normalize the gaps directly. Following Montgomery [3], Katz and Sarnak [5] use the first method normalizing the zeros by:



Then the normalized consecutive spacings  are defined by

Odlyzko uses the second method. He starts with the unnormalized consecutive spacings  and normalized these by

Figure 2: The pair correlation function in
Montgomery's conjecture.

This normalization is arrived at by considering more accurate asymptotic expressions for . (See Odlyzko [4]).

Montgomery proved a series of results about zeros of the zeta function which led him to the following conjecture. Let  and  be two positive numbers with 

. Montgomery conjectured that 

where the left side of the equation uses the first n normalized zeros. Note that: 

The right side  is called a kth-consecutive spacing. Thus, for the normalized spacings, we are counting the number of kth-consecutive spacings that

lie in the interval . Of course this number can be bigger than 1. The function 

is called the pair correlation function. In Figure 2 we give a graph of the pair correlation function.



Figure 3: Testing the Montgomery's conjecture
using the zeros from zero  to zero 

.

If the zeros were to occur at random points on the critical line, i.e. where one zero occurs has no bearing on where another would occur, then the zeros would
act like a Poisson process. In this case the pair correlation function would be the constant function . On the other hand, Montgomery's conjecture

implies that, if we are sitting at a zero on the critical line, it is unlikely that we will find another zero close by. An analogy is with the prime numbers themselves
- that two is prime implies that it is impossible that any two numbers separated by one (other than two and three) can both be prime.

Of course, it is natural to ask if the data supports Montgomery's conjecture. Thanks to the remarkable computations of Andrew Odlyzko we have a large amount
of data. Since Montgomery's conjecture is an asymptotic results Odlyzko concentrated on computing the zeros near a very large zero. He has some of this data
available on his web site. For example he has the zeros number  through  of the zeta function. In Figure 3 we show the empirical results

from the data compared with the theoretical limiting density.

We have divided the interval from 0 to 3.05 into 61 equal subintervals and used these for our intervals . We see that the fit is very good for intervals

between  and , but it is less convincing for the other intervals.

In computations in the 1980's Odlyzko computed 175,587,726 zeros near zero . More specifically he started with zero  and ended

with zero number . Using this data, Odlyzko used 70 million zeros near zero  to check Montgomery's conjecture obtaining a

remarkable fit as shown in Figure 4.

Figure 4: Testing Montgomery's conjecture using
70 million zeros near zero 

The Dyson connection

Montgomery's work was very exciting, since proving any sort of structure about the zeros - if they are where we think they are - is exciting. But things like this
can provide subtle clues towards a proof. Perhaps it is possible to find a way of producing numbers that have the same properties, and if so then maybe, just
maybe, you can find some direct link between Riemann's zeta function and the process, and then maybe, really - just maybe you can prove the Riemann
Hypothesis. So, did this pair correlation arise in other places?

Freeman Dyson had been working on a problem in statistical mechanics - this is the physics and mathematics which attempt to model the behavior of huge
systems, like all the atoms in a liter of gas - all  of them. For systems of such huge populations it is impossible to model each particle individually and

what statistical mechanics tries to do is to find some predictable average behavior, or to work out the rough distribution of what the particles are doing, say 20%
are moving at such and such a speed, in such and such a direction, so much percent of the time.

Dyson, along with his collaborator Mehta, had been working out the theory of random matrices. Building on work of another Princetonian (and Nobel laureate)
Eugene Wigner, they were looking to gain some insight (and prove some theorems) about the statistical properties of the eigenvalues of a random matrix, which
would then cast some light on the problem of the prediction and distribution of energy levels in the nuclei of heavy atoms.

The connection between eigenvalues and nuclei is a bit beyond this discussion; but suffice it to say that the classical many-body formulation of the subatomic
dynamics (electrons spinning around a positively charged nucleus) fails. This led Heisenberg to develop a quantization of this classical setting in which a
deterministic Hamiltonian, a scalar function describing the energy of a system in terms of the positions and momenta of all the acting agents, is replaced by a
matrix acting on a ``wave function'' which encapsulates our uncertain or probabilistic knowledge of the state of our energetic system. It is interesting to note
that Heisenberg did not even know what matrices were when he developed his theory. He was completely led to their constructions by physical theories.

In this matrix mechanics, setting the spectral lines which are observed when a nucleus is bombarded with a particular kind of radiation (which corresponds to
an effect of resonant radiation) may in fact be predicted as eigenvalues of certain matrices which model the physics. For heavy nuclei the models are too



difficult to construct (too many interactions to write down), so the hope is that the behavior of this model might be like that of an average model of the same
basic type (symmetry). These average or ensemble behaviors could be calculated and give some insight into the particular situation, or so it was hoped. These
were the things that Dyson and Mehta were studying.

In a brief conversation in the Institute tea room, where the ghosts of Einstein, Godel, Von Neumann and Oppenheimer still held forth (although did not eat
many of the cookies) Dyson and Montgomery discovered that it looked as though they had been studying the same thing!

Random Matrices
To understand why Dyson recognized the pair correlation function, we need to understand some results about random matrices. A random matrix is a matrix
whose entries are random variables. In the areas of quantum mechanics and number theory, there are several classes of random matrices that are of interest; they
are referred to by certain acronyms, such as GUE, CUE, GOE, and GSE. In Sarnak's lectures, he discusses the CUE class which is asymptotically the same as
the GUE class. Here, we will discuss the GUE class because that is the one chosen by Odlyzko but it turns out that the mathematics is the same.

The acronym GUE stands for Gaussian Unitary Ensemble. By ensemble we mean a collection of matrices and a method for choosing one of them at random.
The entries in an  GUE matrix are complex numbers chosen so that the matrix is Hermitian, i.e. so that if the  th entry is  then the  th entry

is . For diagonal entries this means that  so the diagonal entries must be real. Thus to pick a random  GUE matrix, we only

have to specify how we pick the entries on or above the main diagonal. For a GUE ensemble, we choose entries  on the main diagonal from a normal

distribution with mean 0 and standard deviation . For entries  with  (above the main diagonal)  and  are chosen from a normal

distribution with mean 0 and standard deviation 1. Then the entries below the diagonal are determined by the condition that the matrix be Hermitian.

It should be noted that some authors choose the entries  on the main diagonal to be a standard normal distribution and the entries above the main diagonal

 and  to have a normal distribution with mean  and standard deviation . This choice does not make an essential difference in the results that we

will discuss but makes annoying differences in normalization factors.

It is well-known from linear algebra that Hermitian matrices have real eigenvalues The eigenvalues of a matrix  are numbers  such that for each such ,
there exists a non-zero vector  with the property that .The first question one might consider is how these eigenvalues are distributed along the real
line. More precisely, if we choose a random  GUE matrix, can we say anything about the probability of finding an eigenvalue of this matrix in the

interval ?

The physicist Eugene Wigner worked with random matrices in connection with problems in quantum mechanics. He proved that as , the density
function of the positions of the eigenvalues approaches a semicircle with center at the origin. In Figure 5, we show the fit for eigenvalues of 50 random 

 GUE matrices, along with the semicircle of radius . In the  case, the eigenvalues lie in the interval . We denote

these eigenvalues by 

Figure 5: Eigenvalue distribution in  GUE

matrices.

The eigenvalues of the matrix are called the ``spectrum" of the matrix. From this histogram we see that there are many more eigenvalues near the middle of the
spectrum than at the extreme values.

One can also ask about the distribution of the gaps  between successive eigenvalues of a random GUE matrix. It turns out that there are

different limit theorems that apply to the middle of the spectrum (called the ``bulk spectrum") and to the extreme values (called the``edge" spectrum). We shall
consider only the limit theorem for the bulk spectrum. For this theorem we again normalize the gaps so that asymptotically they have mean 1. The appropriate
normalization for our definition of GUE matrices is:



(Here is an example where the normalization depends on the particular choice we made for the definition of GUE random matricies.)

It has been proven that, in the bulk spectrum, the normalized spacings have a limiting distribution as , called the Gaudin distribution. The density of
the Gaudin distribution cannot be written in closed form, although it can be computed numerically. In Figure 6, we show a simulation of the normalized spacing
distribution for 500 random GUE matrices of size  We have also superimposed the Gaudin density. We see that the fit is quite good.

Figure 6: Normalized spacing distribution.

In Figure 7 we compare the Gaudin density with the Poisson density. We note that in the Poisson case, small values are quite probable, while in the normalized
spacing case, such values are much less probable. This is sometimes described by saying that the eigenvalues `repulse' one another.

Figure 7: the Gaudin density compared to
Poisson density with mean 1.

The analog of Montgomery's conjecture for the gaps for the normalized eigenvalues is:

for any nonnegative numbers  where E means expected value.

The hypothesis that the zeros of the zeta function and the eigenvalues of GUE matrices have the same pair correlation function is called the GUE hypothesis (or
the Montgomery-Odlyzko law). Odlyzko contributed to this hypothesis by calculating a very large number of zeros of the Riemann zeta function and using these
to support the GUE Hypothesis. As we have seen earlier in Figure 4, Odlyzko compared the empirical pair correlation for the normalized zeros of the zeta
function to the conjectured limiting distribution and found a remarkably good fit.

Figure 8: Pair correlation of zeros of the
zeta function based on  zeros

near -th zero, compared with the
GUE conjectured density 

Odlyzko also compared the limiting distributions for the normalized spacings of the eigenvalues of GUE matrices with the distribution of the normalized
spacings of the zeros of the zeta function as shown in Figure 8. We see that the fits again remarkably good and this has led to the hope that the use of the theory
of random matrices will lead to a proof of the Riemann hypothesis.



Related Work
In a series of papers, Craig Tracy and Harold Widom made major contributions to the study of random matrices and their applications. This started with their
finding limiting distribution for the largest eigenvalue for three ensembles of random matrices studied by Wigner and Dyson: the Gaussian Orthogonal
Ensemble (GOE), Gaussian Unitary Ensemble (GUE), and Gaussian Symplectic Ensemble (GSE). For each of the ensembles there is a unique probability
measure, called Haar measure, that is invariant under transformations associated with the ensemble. A random matrix for a particular ensemble means a matrix
chosen according to the Haar measure. For the GUE ensemble, Haar measure amounts to choosing random matrices by normal distributions, as described
earlier. For the three ensembles, the probability densities for the eigenvalues of an  matrices to lie in infinitesimal intervals about the points 

are:

where  is a normalizing constant and  according to whether we are considering the GOE, GUE, or GSE ensemble.

Figure 9: Probability density of scaled
largest eigenvalue.

Tracy and Widom [9] showed that the largest eigenvalue, properly normalized, tends to a limiting distribution. These limiting distributions were different for
the three possible values of  corresponding to the three different ensembles. Their densities are shown in Figure 9. They are denoted by 

and they are now called Tracy-Widom distributions. As with the Gaudin distribution there is no formula for these densities though they can be computed
numerically. These distributions have been found to be the limiting distributions in many different fields and appear to indicate a new central limit theorem.

Let  be the largest eigenvalue of a random  GUE matrix. Then Tracy and Widom proved that 

has limiting distribution  In Figure 10, we show the results of simulating 1000 random  GUE matrices and scaling their largest eigenvalues.

Figure 10: Simulated distribution of largest
eigenvalue for  GUE matrices compared

to Tracy Widom limiting distribution.

The discovery of these distributions has led Tracy and Widom and others to find these distributions as limiting distributions for phenomena in a number of
different areas outside of the study of random matrices. We now discuss two such applications.

Around 1960, Stanislaw Ulam considered the following problem: Given a positive integer , let  be a random permutation of the integers from 1 to . Let 



 be the length of the longest increasing subsequence in . For example, if  the longest increasing sequence is ,

so  Ulam asked: what is the average value of ? Based upon Monte Carlo simulations, Ulam conjectured that the average length is asymptotic

to . This conjecture was proven by Vershik and Kerov [6]. Recently the distribution of  has been the subject of much research. In particular, Baik,

Deift, and Johansson [7] have shown that if  is scaled in the appropriate way, then the distribution of  approaches a limiting distribution as .

More precisely, they show that the random variable 

converges in distribution to  as . In Figure 11, we show the results of simulating 1000 random permutations of length 100, and scaling the sizes of

their longest increasing subsequences.

Figure 11: Simulation results for longest
increasing subsequences of permutations.

Another interesting example is based on a model for the spread of a fire studied by Gravner, Tracy and Widom (GTW) [8]. We imagine a large sheet of paper
and a fire starting in the bottom left corner. The fire moves deterministically to the right but also moves up by a random process described next.

We start with a grid of unit squares on the paper. We label the rows  and the columns  We represent the spread of the fire by a

placing letters H or D in the squares of the grid. We start at  with a letter D at (0,0). To get the configuration of the fire at time  we look at the fire

in columns 0 to t+1 at time t. If the height of the fire at a column is less than the height of the fire in the column to its left, we add a D to the column. If the
height of the fire is greater than or equal to the height of the fire in the column to its left, we toss a coin. If heads comes up we add an H to the height of the
column. For column 0 which has no column to the left we always toss a coin to see if we should add an H to this column.

Let's see in more detail how this works. We start at time 0 and put a D in column 0 and so the height of the fire in this column is 1.

                   t = 0     D
                             0   1   2   3   4   5   6.

At time t = 1 we look at columns 0 and 1 at time 0. The height of the fire in column 1 is less than in column 0 so we add a D to this column. In column 0 we
toss a coin. It came up heads so we added an H to the first blank square in this column. Thus for time t = 1 we have:

                   t = 1     H  
                             D   D
                             0   1   2   3   4   5   6.

Now at time  we look at columns 0,1,2 at time t = 1. The height of the fire in column 2 is less than that in column 1 so we add a D to column 2.
Similarly, the height of the fire in column 1 is less than the height of column 0 so we add a D to column 1. For column 0 we tossed a coin to decide if we should
add an H to column 0. It came up tails so we did not add an H. Thus for time t = 2 we have:

 
                             H   D
                   t = 2     D   D   D
                             0   1   2   3   4   5   6.

Continuing in this way we have:

                      
                               

                                 H
                   t = 3     H   D   D
                             D   D   D   D
                             0   1   2   3   4   5   6  
        
                                 H
                                 H   D
                    t = 4    H   D   D   D
                             D   D   D   D   D
                             0   1   2   3   4   5   6                                        
                
                                 H   D   



                             H   H   D   D     
                    t = 5    H   D   D   D   D   
                             D   D   D   D   D   D                                                                                 
                             0   1   2   3   4   5   6    
                          
                                     H
                                 H   D   D
                    t = 6    H   H   D   D   D
                             H   D   D   D   D   D.

Let  be the height of the fire in column  after time  We wrote a Mathematica program to simulate the spread of the fire. We ran the program for t =

500, t = 1000 and t = 2000. In Figure 12 we show plots of the height of the fire, , for these three times.

Figure 12: Simulation for height of the fire for t =
500,1000,1500,2000.

Note that up to time  the graphs have a curved shape and after  they seem to follow a straight line. This behavior is completely described by the limiting

results obtained by GTW.

In our simulations we have assumed that the coin that is tossed is a fair coin. The authors consider more generally that the probability that the coin turns up head
is . The authors prove limit theorems for the height of the fire after time  under the assumption that  and  in such a way that their ratio  is a

positive constant  for . Their limit theorems use two constants,  and  which depend on  and . These constants are:

The authors prove the following limit theorems showing what happens when the ratio x/t = c is kept fixed with c a positive constant. They have limit theorems
for four different ranges for c.

1. GUE Universal Regime: x/t = c with 

Thus in this regime, the limiting distribution is the Tracy-Widom distribution for the the limiting distribution for of largest eigenvalue for the GUE
ensemble and also the limiting distribution for the length of the longest increasing subsequence in a random permutation.

2. Critical Regime: x/t = c with .

where  is a  Actually it is enough to assume that .



Note that, since it takes  time units for the fire to reach column  can be at most . The authors provide the following numerical values of

the limiting distribution for negative integers.

Thus, when  with  the fire at time t will be close to it's maximum possible height t-x.

3. Deterministic Regime: x/t = c with 

Note again that  can be at most  so this says that, in this regime, in the limit, the fire in column x reaches its maximum possible height.

Figure 13:  as estimated from limit

theorems.

Let's see what these limit theorems would predict for the height of the fire at t = 2000 when p =1/2. The GUE universal regime will apply for .

Here the limiting result in this regime implies that  should be approximately . The critical regime applies when x = 1000. Here the

limit theorem says that  will be approximately 1000. The deterministic regime will apply for . The limiting theorem for this

regime implies that, for ,  is well approximated by the line 

Figure 14:  for a simulated fire for 2000

time units.

Putting all this together we would predict that for, t = 2000, the limiting curve should be as shown in Figure 13.

In Figure 14 we show the result of simulating the fire for 2000 time units.



These two graphs are remarkably similar. In fact, if you superimpose them you will not be able to see any difference! Thus the limit results predict the outcome
for large t very well.

The authors also consider a fourth regime which they call the finite  GUE regime For this regime they fix  and let  Thus they look for the limiting
distribution for the height of the fire in a specific column. For this they prove that

has a limiting distribution  which is the distribution of the largest eigenvalue in the GUE of  Hermitian matrices. In Figure 15 we show

the density for the x = 0 to x = 6.

Since for column one we are just tossing coins to determine the height of the fire, we will get the normal distribution as limiting distribution for column 0, and
this is 

Figure 15: the densities 
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