
Appendix J

Errata

This list of errata is maintained by the author. If you notice additional instances
that are incorrect, misleading or poorly explained, please notify the author at
dana.williams@dartmouth.edu. This page was last updated on July 19, 2021
at 13:39.

Page 2, Definition 1.1: It would have sufficed to assume that topological groups
satisfy the T0-axiom of separability; that is, the distinct points have distinct
closures. In a topological group, this forces points to be closed. The proof
is similar to that of Lemma 1.13. Let s 6= r be points in G. We may as
well assume s = e and that we have a neighborhood U of e not meeting r.
Continuity of multiplication implies there is a neighborhood V of e such that
V 2 ⊂ U . Then V ⊂ U by Lemma 1.12.

Page 5, Definition 1.16: It turns out, very few of the authorities agree on what
a locally compact space is if the space is not Hausdorff. The definition I
have given seems the most natural to me as these are the sorts of spaces that
arise in the study of C∗-algebras. Nevertheless, I should have pointed out
that many authors define a space to be locally compact if every point has a
compact neighborhood. One drawback of my definition is that one can have
compact spaces that are not locally compact.

Page 7, Lemma 1.30: The “⇐=” implication in the lemma is false as stated.
The last if and only if should be replaced by “If fn → f in C(X,Y ), then
whenever xn → x in X we have fn(xn) → f(x). Conversely, if every subnet
{ fnj } has the property that xnj → x in X implies fnj (xnj ) → f(x), then
fn → f in C(X,Y ).” This is actually what is proved on page 8.

Page 30, Line −10: Replace “a compact convex set” with “a compact set”.

Page 54, Line 19: Replace “∗-subalgebra of M(A oα G)” with “∗-subalgebra of
Aoα G”.

Page 54, Line −10: Replace “a, b ∈ A” with “a, b ∈ Aoα G”.
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Page 63, Line −1: Delete “on the previous page”.

Page 70, Equation (2.37): There is a factor of 1
2n+1 missing in the last two

formulas:

En(vk ∗ um) =
1

2n+ 1

j=n∑
j=−n

vj ∗ vk ∗ um ∗ v−j =
vk ∗ um

2n+ 1

j=n∑
j=−n

ρjm.

Page 70, line −10: The is a missing factor of 1
2n+1 is the limit in the displayed

equation:

lim
n→∞

En(vk ∗ um) = vk ∗ um lim
n→∞

1

2n+ 1

j=n∑
j=−n

ρjm = 0.

Page 71, line −6: Both occurrences of “θ′ = θ mod 1” should be “θ′ = ±θ
mod 1”.

Page 72, line 3 of Remark 2.62: “Propositions” should be “Proposition”.

Page 76, line −5: “subtly” should be “subtlety”.

Page 79, line −5: At least one expert has noted that the word “current” suggests
that the “Danish” notation is the standard notation. There are others; for
example, the notation C∗(G,A, α) is also used. I guess my prejudice is clear.

Page 88, Lines 8–9: The phrase “Since f is uniformly continuous, the triangle
inequality implies” is not very helpful since f is only defined on N . We could
“rescue” it by noting that f is the restriction to N of some F in Cc(G,A)
by Lemma 8.54 on page 258 and appealing to the uniform continuity of F .
(Of course, I can’t, with a straight face, claim that this forward reference is
what I originally intended.) Alternatively, we can establish the existence of
V ′′ with the required property via a compactness argument as follows. We
can assume that V ′ is precompact and symmetric. If no V ′′ exists, then for
each V ⊂ V ′ we can find hV ∈ V and nV ∈ N such that

‖f(h−1
V nV hV )− f(nV )‖ ≥ ε

3
.

Since we must have nV ∈ V ′(supp f)V ′ and since V ′(supp f)V ′ has compact
closure, we can pass to a subnet, relabel, and assume that nV → n while
hV → e This leads to a contradiction and establishes the existence of V ′′ as
claimed.

Page 91, Line −6: Replace “Assume that N and K” by “Assume that N and
H”.

Page 95, line 11: Replace “x ∈ Gx” with “s ∈ Gx”.

Page 110, Equation 4.1: Replace “h” by “s”.
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Page 129, line 9: Replace “C0(X)” by “C0(G\X)”.

Page 153, Footnote 3: Although the footnote is correct in the case G is second
countable and H is separable, it is unfortunately not proved in Section 9.3
on page 283 as claimed. I have included a proof in Note J.3 below. In the
general case, I have not completely sorted out the details, but it will certainly
be necessary to work with separably valued (or essentially separably) valued
functions and locally µG-almost everywhere equivalence classes.

Page 177, second paragraph of (c) =⇒ (d): To see that G·x has a dense open
Hausdorff subset, it is not sufficient to appeal directly to Lemma 6.3. Instead,
notice that every nonempty subset S of X has a relatively open nonempty
Hausdorff subset: by Lemma 6.3, S has a dense open Hausdorff subset U and
U must have nontrivial intersection with S. But then a maximal such open
set must be dense by exactly the same argument as in (b) =⇒ (c) in the proof
of Lemma 6.3 — the fact that F is closed is never used.1

Page 195, line 1: Replace “R̂” with “R̂”.

Page 227, line 7: Replace “principle” by “principal”.

Page 232, line 9: Proposition 8.7 on page 232 can be easily strengthened. See
Note J.6 on page 536.

Page 234, line −4: Corollary 8.9 on page 234 can be easily strengthened. See
Note J.6 on page 536.

Page 240, lines 11–13: The assertion that separable regular systems are EH-
regular is true, but does not follow easily from Theorem 8.16 on page 237.
(Unfortunately, in Definition 8.10 on page 235, a irreducible representation
can be induced from a stability group without its kernel being an induced
primitive ideal! In the first case, the restriction merely must contain P and
in the later it must equal P .) However, the statement in the text is true;
this follows, for example, from [66, Proposition 20]. A simple modification of
Theorem 8.16 on page 237, which also implies the EH-regularity assertion, is
given in Note J.6 on page 536.

Page 240, line 14: Replace “ones were” by “ones where”.

Page 241, Line 15: Replace “equivalent to” by “equal to”.

Page 242, Remark 8.23: Archbold & Spielberg have a tidy proof of a more gen-
eral result in their 1994 paper in volume 37 of the Proceedings of the Edinburgh
Mathematical Society.

1Alternatively, we can forget about showing every set has a dense open Hausdorff subset, and
just notice that since open subsets of Baire spaces are Baire by [109, Lemma 48.4], it suffices in
the original proof to just note that G · x has a nonempty open Hausdorff subset.
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Page 252, Lemma 8.38: The “only if” portion of the lemma is incorrect as
stated. The last sentence should be replaced with “If the net { I(Fj) }
converges to I(F ) in I(A), then given P ∈ F there is a subnet { I(Fjk) }
and Pk ∈ Fjk such that Pk → P in PrimA. If every subnet of { I(Fj) } has
a subnet { I(Fjki ) } with Pi ∈ I(Fjki ) such that Pi → P in PrimA, then
{ I(Fj) } converges to I(F ) in I(A).” This is what is actually proved in the
text.

Page 255, line 7: Replace “points” by “point”.

Page 256, line −4: Replace “are” by “is”.

Page 259, line 16: Replace “‖κH(f)‖1” by “‖κH(f)‖AoH”.

Page 262, line 11: Replace “not be” by “not to”.

Page 275, line 16: Replace “s · r̃s·Q” with “s · r̃Q”.

Page 284, Lemma 9.16: I should have pointed out that we need H separable in
order to know that the integrand of equation (9.27) is a Borel function of
(P, s).

Page 286, Lines 15–16: The statement “Notice that each . . . in the obvious way”
requires that we know that K(P ) can be realized as the Hilbert space of βP -
square integrable Borel functions on G which transform in the appropriate
way. This was not proved in Proposition 5.4 on page 153, nor as claimed in
footnote 3 on page 153, is a proof given in Section 9.3 on page 283 (see the
errata for page 153 above). Instead, the result must be proved directly, and
I have done so in Note J.3 below.

Page 331, line −9: Replace “where” by “were”.

Page 333, Definition B.5: Of course, “separately valued” should be “separably
valued” here and elsewhere.

Page 344, line 25: Replace “Hill and Phillips” by “Hille and Phillips”.

Page 345, line 8: Replace “vanishing of” by “vanishing off”.

Page 356, line 7: Replace “ker ρ ⊂ J” with “ker ρ ⊃ J”.

Page 338, line 7: Replace “B-measurable” with “measurable”.

Page 358, line 19: Replace “
(
f(x)g − fg)

)
· a” with “

(
f(x)g − fg)

)
· b”.

Page 359, line 9: Replace “m(x)b(x)” with “m(x)b”.

Page 367, Theorem C.26: Item (c) is awkwardly stated (at best). The point is
that if either (a) (or) (b) hold, then A is a C0(X)-algebra so that “C0(X)-
linear” has a meaning. Of course, if A is imply a C∗-algebra which is isomor-
phic to the section algebra, then it is premature to talk about a C0(X)-linear
isomorphism. Of course, it inherits a C0(X)-algebra structure in this case
and then the isomorphism is C0(X)-linear by definition.



533

Page 389, Corollary D.34 The corollary is correct as stated. But in the proof it
should be noted that d0 is also a Radon-Nikodym for σ∗(µG×µ) with respect
to µG × µ. Hence part (a) is valid.

Page 410, Line 21: Lemma D.20 does not suffice to establish Remark F.3 since
the lemma assumes that the functions which separate points are C-valued.
Here π is X-valued. But a variation on the proof of Lemma D.20 will suffice.

Page 418, Footnote 5: Delete “; see page 423”.

Page 418, line 13: Replace “an appeal” with “and appeal”.

Page 419, line −11: Replace “decomposition of ρ” with “decomposition of ρ
with respect to C”.

Page 427, Line −9: Delete “In fact, it suffices to take f and g in a fundamen-
tal sequence.” It does not: consider a trivial bundle and the fundamental
sequence given by constant functions.

Page 452, line 4: It is not correct to say that (PrimA×PrimA, γ) is a measured
groupoid. The groupoid G := PrimA × PrimA should be replaced by the
equivalence relation R ⊂ PrimA × PrimA where P ∼ Q if there is a s ∈ G
such that Q = s ·P . Since R is the continuous image, under the map (P, s) 7→
(P, s · P ), of the Polish space PrimA × G, R is certainly analytic. In fact,
if K ⊂ G is compact, then it is easy to see that the image of PrimA ×K is
closed. Since G is σ-compact, R is a Fσ in PrimA × PrimA, and therefore
Borel — and hence standard. Certainly, there is no harm in viewing γ as
a σ-finite measure on R, and Lemma 9.1 shows that γ is equivalent to γ−1.
We can let λP be the measure on R supported on {P } ×G · P given by the
measure βP described in Remark 9.4:

λP (f) :=

∫
PrimA

f(P,Q) dβP (Q).

Then

γ(f) =

∫
R(0)

∫
R
f(P,Q) dλP (P,Q) dµ(P )

=

∫
PrimA

∫
PrimA

f(P,Q) dβP (Q) dµ(P ).

Since βP = βs·P by Lemma 9.3 and Remark 9.4, we have (Q,P ) · λP = λQ

for all (Q,P ) ∈ R. Therefore if [γ] is the measure class corresponding to γ
(as a measure on R), then (R, [γ]) is a measured groupoid a la Ramsay (see
[108, Definition 4.1]), and the proof of Lemma 9.2 proceeds with R in place
of G.

Page 454, Lemma H.2 The lemma should be reworded to say that if Fi → F in
C (X), then assertions (a) and (b) hold. However, to see that Fi → F , then
we need to show that every subnet of {Fi } has properties (a) and (b).
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Page 454, line −9: Replace “Fi ∩ U” with “Fi ∩ U3”.

Page 463, Footnote 3, Line 3: Replace “a subset has a” by “a pre-compact sub-
set has a”.

Page 464, Line −8: Replace “for µG-almost all” to “for locally µG-almost all”.
(Alternatively, we could assume that G is second countable.)

Page 465, Line 4: Replace “µG-almost everywhere” with “locally µG-almost ev-
erywhere”.

Page 490, Proof of Lemma I.11: The statement on line 17 — that “ϕ′ is clearly
normal” — is hard to justify. I have included a proof of this in Note J.1
below. As an alternative, I have also supplied a different proof of the lemma
in Note J.2 on the facing page.

Page 503, line 13: Delete the comma after “standard Borel spaces”.

Page 525, Reference [108]: Replace “Texas Tech” with “Texas Christian Uni-
versity”.

Note J.1. We want to show that if (X,µ) and (Y, ν) are standard measure spaces
and if τ : X → Y is a Borel map such that for every ν-null set N , τ−1(N) is µ-null,
then map ϕ : L∞(Y, ν) → L∞(X,µ) defined by ϕ(f)(x) := f

(
τ(x)

)
is normal.2

(The condition on τ and null sets is required so that ϕ is well defined on almost-
everywhere equivalence classes.) Here we are viewing L∞(Y, ν) as a von Neumann
algebra of operators on L2(Y, ν), which is a separable Hilbert space (Lemma D.41
and Definition I.33).

So, suppose that F is a filtering subset of L∞(Y, ν)+ with f = lub(F). By
[29, Appendix II], f is in the strong closure of F . Since the strong operator topology
is metrizable on bounded subsets (because L2(Y, ν) is separable), we can find a
sequence { fi } in F such that fi → f in the strong operator topology. After
changing each fi on a null set, we can also assume that for each i, fi(y) ≤ f(y) for
all y ∈ Y . Since ν is a finite measure, 1 ∈ L2(Y, ν) and we must have∫

Y

fi(y) dν(y)→
∫
Y

f(y) dν(y).

Thus,

lim
i

∫
Y

(
f(y)− fi(y)

)
dν(y) =

∫
Y

∣∣f(y)− fi(y)| dν(y) = 0.

Thus, we can pass to a subsequence, relabel, and assume that there is a ν-null set
N such that fi(y) → f(y) for all y /∈ N . But then ϕ(fi)(x) → ϕ(f)(x) for all
x /∈ τ−1(N). Since the latter is a µ-null set, it follows that

ϕ(f) = lub{ϕ(g) : g ∈ F }.

Thus, ϕ is normal as claimed.

2The definition of a normal map is given on page 502.
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Note J.2. Here we give a different proof of Lemma I.11. Let A be the range of
ϕ. By Theorem I.10 on page 488, we can realize A with the image of those Borel
functions on X which are constant on equivalence classes for a smooth equivalence
relation on X. Furthermore, A is isomorphic to L∞(Z, ρ) where Z = X/∼ and
ρ = q∗µ (where q : X → Z is the quotient map). Since ϕ gives us an isomorphism
of L∞(Y, ν) onto L∞(Z, ρ), Corollary I.38 on page 502 implies that there is a
Borel map τ̃ : Z → Y such that ϕ(f)([x]) = f

(
τ̃([x])

)
. (We can extend τ̃ from

Corollary I.38 on the null set N in any way we like.) Then, assuming τ := τ̃ ◦ q, we
have ϕ(f)(x) = f

(
τ(x)

)
.

Note J.3. In this note, I want to show that the Hilbert space V in Proposition 5.4
is naturally isomorphic to the Hilbert space L2

u(G,µG/H ,H) built from functions on
G as described in footnote 3 on page 153. I will use the notations and set up from
Proposition 5.4 on page 153. However, I will assume throughout that G is second
countable and H is separable (see Remark J.5 on the next page for comments on
these hypotheses). Specifically, L2

u(G,µG/H ,H) is the set of µG-almost everywhere
equivalence classes of functions in L2

u(G,µG/H ,H), where the later consists of Borel

functions ξ : G → H such that ξ(st) = u−1
t

(
f(s)

)
for all s ∈ G and t ∈ H, and

such that sH 7→ ‖f(s)‖ is in L2(G/H,µG/H). As in the proof of Lemma 9.16 on
page 284, it is not hard to see that

(ξ | η) :=

∫
G/H

(
ξ(r) | η(r)

)
dµG/H(rH)

is an inner product on L2
u(G,µG/H ,H),3 and the proof of Proposition 9.18 on

page 286 shows that L2
u(G,µG/H ,H) is a Hilbert space. Furthermore, Vc is clearly

a subspace of L2
u(G,µG/H ,H), and it is immediate that we can view V as a subspace

of L2
u(G,µG/H ,H). What we want is the following.

Lemma J.4. The subspace Vc is dense in L2
u(G,µG/H ,H). Consequently, we can

identify V and L2
u(G,µG/H ,H).

Proof. We recall from the proof of Proposition 5.4 on page 153 that for each f ∈
Cc(G,A) and h ∈ H, we have W (f⊗h) ∈ Vc and that the image M of Cc(G,A)�H
under W is dense in Vc. (The map W is defined at the beginning of the proof of
Proposition 5.4.) Therefore, it will suffice to see that if ξ ∈ L2

u(G,µG/H ,H)∩M⊥,
then ξ is zero µG-almost everywhere. Note that, since (π, u) is covariant,

π
(
α−1
r

(
f(rt)

))
ut = utπ

(
α−1
rt

(
f(rt)

))
.

Consequently,(
W (f ⊗ h) | ξ

)
=

∫
G/H

(
W (f ⊗ h)(t) | ξ(r)

)
dµG/H(rH)

=

∫
G/H

∫
H

(
π
(
α−1
rt

(
f(rt)

))
h | ξ(rt

)
ρ(rt)−

1
2 dµH(t) dµG/H(rH)

3We are using the separability of H here — see the end of Remark J.5 on the next page.
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which, by Proposition H.11 on page 462, is

=

∫
G

(
π
(
α−1
r

(
f(r)

))
h | ξ(r)

)
ρ(r)

1
2 dµG(r).

Define N : Cc(G,A)�H → Cc(G,H) by

N(f ⊗ h)(r) := ρ(r)
1
2π
(
α−1
r

(
f(r)

))
h.

Let A be the image of N . Now, invoking the obvious analogue of Lemma H.15
on page 464 (with Cc(G) replaced by Cc(G,H)), we see that it suffices to show
that A is dense in Cc(G,H) in the inductive limit topology. Using a partition of
unity argument, it will suffice to show that for each r ∈ G and ε > 0 there is a
f ∈ Cc(G,A) such that

‖N(f ⊗ h)(r)− h‖ < ε.

But this is an easy consequence of the nondegeneracy of π.

Remark J.5 (The Separability Hypotheses). I dislike invoking separability hypothe-
ses unnecessarily, but the price was too high in Lemma J.4 on the preceding page.
Forcing G to be second countable means that locally µG-null sets are null. This has
a number of comforting consequences not the least of which is that we can apply the
results from Section H.2 on page 456 — specifically Proposition H.11 on page 462,
Lemma H.14 on page 463 and Lemma H.15 on page 464— as is. (Of course, non-
separable analogues of these results can be found in places like [54, Chap. III §14],
but there is a price to be paid.) Insisting that H is separable means that we can
work with the results in Section I.4 on page 490 without worrying whether our
functions are separably valued or essentially separably valued (see the definitions
of measurablity in Appendix B.1 on page 331). For example, we need ξ and η to
be separably valued to conclude that

s 7→
(
ξ(s) | η(s)

)
is Borel when ξ and η are. (This was, unfortunately, not mentioned in Lemma 9.16
on page 284.)

Note J.6. It is possible to easily give a sharpening of Theorem 8.16 on page 237
that could be useful. This requires strengthening of Proposition 8.7 on page 232
and Corollary 8.9 on page 234 which are also of potential interest. The sharpening
of Theorem 8.16 is that we can add the following line to the end of its statement:

In particular, if ρ is an irreducible representation of AoαG, then there
is a primitive ideal P ∈ PrimA and an irreducible representation L of
Aoα|GP GP such that Res(kerL) = P and IndGGP L is equivalent to ρ.

To see this, the key observation is to observe that the proof of Proposition 8.7
can be modified to show that the hypotheses that (A,G, α) is regular and that
G\PrimA is almost Hausdorff imply that points are closed in PrimA. (This is
just a fancy way of saying that A/P is simple for each P ∈ PrimA.) To see that
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this is the case, notice that on page 232, line −16, A(G · P )/Q must be simple
since PrimA(G · P ) is Hausdorff. But A(G·)/Q is isomorphic to A/P . Having
taken care of Proposition 8.7, Corollary 8.9 on page 234 can be easily modified
by replacing “with Res(kerL) ⊃ P” by “with Res(kerL) = P”. Having fixed
both these preliminary results, in the proof of Theorem 8.16 we make the following
modifications on page 239:

• In line 6, replace “with Res(kerL) ⊃ K” by “with Res(kerL) = K”.

• In line 10, replace “with Res(kerL′) ⊃ Q” by “with Res(kerL′) = Q”.

• In line 18, replace “Since Res(kerL′) ⊃ P” by “Since Res(kerL′) = P”.


