
Random Walks on Weighted Graphs, and

Applications to On-line Algorithms

Don Coppersmith∗ Peter Doyle† Prabhakar Raghavan∗

Marc Snir∗

Abstract

We study the design and analysis of randomized on-line algorithms.

We show that this problem is closely related to the synthesis of random

walks on graphs with positive real costs on their edges. We develop

a theory for the synthesis of such walks, and employ it to design

competitive on-line algorithms.

∗IBM T.J. Watson Research Center, Yorktown Heights, NY 10598.
†AT&T Bell Laboratories, Murray Hill, NJ 07974.

1

1 Overview

Much recent work has dealt with the competitive analysis of on-line algo-
rithms [5, 16, 18]. In this paper we study the design of randomized on-line
algorithms. We show here that the synthesis of random walks on graphs with
positive real costs on theirs edges is related to the design of these randomized
on-line algorithms. We develop methods for the synthesis of such random
walks, and use them to design competitive randomized on-line algorithms.

Let G be a weighted undirected graph with n vertices {1, . . . , n}; cij =
cji > 0 is the cost of the edge connecting vertices i and j, cii = 0. Consider a
random walk on the graph G, executed according to a transition probability
matrix P = (pij); pij is the probability that the walk moves from vertex i to
vertex j, and the walk pays a cost cij in that step. Let eij (not in general
equal to eji) be the expected cost of a random walk starting at vertex i and
ending at vertex j (eii is the expected cost of a round trip from i). We say
that the random walk has stretch c if there exists a constant a such that, for
any sequence i0, i1, . . . , iℓ of vertices

∑ℓ
j=1 eij−1ij ≤ c ·

∑ℓ
j=1 cij−1ij + a. We

prove the following tight result:

Any random walk on a weighted graph with n vertices has stretch
at least n − 1, and every weighted graph with n vertices has a
random walk with stretch n − 1.

The upper bound proof is constructive, and shows how to compute the
transition probability matrix P from the cost matrix C = (cij). The proof
uses new connections between random walks and effective resistances in net-
works of resistors, together with results from electric network theory. Con-
sider a network of resistors with n vertices, and conductance σij between
vertices i and j (vertices i and j are connected by a resistor with branch
resistance 1/σij). Let Rij be the effective resistance between vertices i and
j (i.e., 1/Rij is the current that would flow from i to j if one volt were
applied between i and j; it is known that 1/Rij ≥ σij). Let the resistive
random walk be defined by the probabilities pij = σij/

∑

k σik. In Section 3
we show that this random walk has stretch n − 1 in the graph with costs
cij = Rij. Thus, a random walk with optimal stretch is obtained by comput-
ing the resistive inverse (σij) of the cost matrix (cij): a network of branch
conductances (σij ≥ 0), so that, for any i, j, cij is the effective (not branch)

2

resistance between i and j. Unfortunately, not all cost matrices have resis-
tive inverses (with positive conductances). However, we show in Section 4
that every matrix (cij) has a generalized resistive inverse: a network of non-
negative branch conductances σij with associated effective resistances Rij ,
such that either Rij = cij , or Rij < cij and σij = 0. The resistive random
walk has stretch n − 1 for the graph with costs Rij , and consequently for
the graph with costs cij , since it never traverses those edges whose costs it
underestimates.

Chandra et al. [7] use electric networks to analyze a particular random
walk, in which pij = (1/cij)/(

∑

k 1/cik). Traditionally, this is how electric
networks have been used in studying random walks: to analyze a given ran-
dom walk (cf. Doyle and Snell [10]). Here we instead use electric networks
to synthesize a (different, in general) random walk with optimal stretch.

Next, we outline the relevance of this random walk synthesis problem to
the design of on-line algorithms. Consider the following game played between
a cat and a mouse on the graph G. Round r starts with both cat and mouse
on the same vertex ir−1. The mouse then moves to a new vertex ir not known
to the cat; the cat then walks on the graph until it reaches the mouse at ir, at
which point round r + 1 starts with the mouse moving to a new node. Each
move of the mouse may depend on all previous moves of the cat. The cat
may use a randomized algorithm, and choose its next move probabilistically,
as a function of its previous moves. The games stops after a fixed number
of rounds. A strategy for the cat is c-competitive if there exists a constant a
such that for any number of rounds and any strategy of the mouse the cat’s
expected cost is at most c times the mouse’s cost +a. A random walk with
stretch c defines a strategy for the cat that is c-competitive: in each round,
the cat executes a random walk according to P until it finds the mouse.
This strategy is very simple, and memoryless: the cat need not remember its
previous moves, and the next cat move depends only on its current position.

Some special cases of the cat-and-mouse game have been studied by
Baeza-Yates et al. [1]. We show that this cat-and-mouse game is at the
core of many other on-line algorithms that have evoked tremendous interest
of late [3, 4, 5, 8, 9, 11, 18, 20, 21, 22]. We consider two settings. The first is
the k-server problem, defined in [18]. An on-line algorithm manages k mobile
servers located at the vertices of a graph G whose edges have positive real
lengths; it has to satisfy on-line a sequence of requests for service at vertex
vi, i = 1, 2, . . ., by moving a server to vi unless it already has a server there.

3

Each time it moves a server, it pays a cost equal to the distance moved by
that server. We compare the cost of such an algorithm, to the cost of an
adversary that, in addition to moving its servers, also generates the sequence
of requests. The competitiveness of an on-line algorithm is defined with re-
spect to these costs (Section 8) [3, 21]. It was conjectured in [18] that for
every cost matrix there exists a k-competitive algorithm for this problem.
Repeated attempts to prove this conjecture have met only with limited suc-
cess [8, 9, 21]. We use our optimal random walk to derive optimal randomized
k-competitive server algorithms in two situations: (1) when the graph G has
a resistive inverse, and (2) when the graph G has k+1 vertices. This includes
all previously known cases where the conjecture was proven true, as well as
many new cases. We do so with a single unified theory — that of resistive
inverses. The algorithm is very simple, randomized and memoryless.

The other setting is the metrical task system (MTS), defined in [5]. A
MTS consists of a weighted graph (the vertices of the graph are positions, and
edge weights are the costs of moving between positions). An algorithm occu-
pies one position at any time. A task is represented by a vector (c1, . . . , cn),
where ci is the cost of processing the task in position i. The algorithm is
presented a sequence of tasks T = T1, T2, . . . and can move to a new position
before processing each task. The cost incurred by the algorithm is the sum of
the costs of moving and processing tasks. A (2n− 1)-competitive on-line al-
gorithm for MTS is presented in [5], and shown to be optimal. The algorithm
is deterministic, but somewhat complex. In Section 9 we present a simple,
memoryless randomized algorithm for any MTS that is (2n−1)-competitive,
and show that no randomized algorithm can do better against the adaptive
on-line adversary.

Deterministic on-line algorithms traditionally make use of the following
seemingly paradoxical idea: not knowing the future, they base their decisions
on their record of the past. In a number of interesting cases, the maintenance
of appropriate information from the past suffices to make these algorithms
competitive. Our main theme here seems even more paradoxical: our ran-
domized on-line algorithms ignore the past as well, maintaining no history.
Instead they base their choice at each step just on the relative costs of the
alternatives at hand. This yields simple memoryless randomized algorithms
that are competitive for various situations.

The remainder of this paper is organized as follows. Sections 2–4 deal with
random walk strategies for the cat-and-mouse game; more general strategies

4

are discussed in Section 5. Sections 6 and 7 derive some additional properties
of resistive random walks that will prove to be of use later on. Section 8 con-
siders the k-server problem, and Section 9 deals with metrical task systems.
We conclude with directions for further work in Section 10.

2 Lower bound on Stretch

In this section we give a lower bound on the stretch of any random walk on
any graph.

Theorem 2.1 For any n × n cost matrix C and any transition probability
matrix P , the stretch of the random walk defined by P on the graph with
weights given by C is ≥ n − 1.

Proof: We can assume w.l.o.g. that P is irreducible (the underlying
directed graph is strongly connected). Let φi be the ith component of the
left eigenvector of P for the eigenvalue 1 (when P is aperiodic, this is the
stationary probability of vertex i), so that φj =

∑

i φipij [17]. Let ei =
∑

j pijcij denote the expected cost of the first move out of vertex i, and let
E =

∑

i φiei =
∑

i,j φipijcij be the average cost per move. We have

∑

i,j

(φipij)eji =
∑

i

φi





∑

j

pijeji



 =
∑

i

φi(eii − ei)

=
∑

i

φi(E/φi − ei) = (n − 1)E,

(see [17], for instance, for a proof of the identity eii = E/Φi), while

∑

i,j

(φipij)cji =
∑

i,j

(φipij)cij = E.

Thus,
∑

i,j

(φipij)eji = (n − 1)
∑

i,j

(φipij)cji.

Notice that, if each directed edge (ji) (note the order!) is counted with
multiplicity proportional to φipij , then a flow condition is satisfied: the total
multiplicity of edges leading out of i is equal to that of those leading into i.

5

Thus, the above equation represents a convex combination of cycles so that
there is some cycle (i1, i2, . . . iℓ, iℓ+1 = i1) with stretch at least n − 1; thus,

ℓ
∑

j=1

eij ij+1
≥ (n − 1)

ℓ
∑

j=1

cij ij+1
.

2

The symmetry of the cost matrix C is necessary for the theorem. If we
drop the condition of symmetry, a cost matrix might be

C =







0 1 2
2 0 1
1 2 0





 ,

and the random walk with transition probabilities

P =







0 1 0
0 0 1
1 0 0







has a stretch of one, rather than at least two, as would be demanded by the
theorem.

3 Upper bound — resistive case

We next consider the complementary upper bound problem: given C, to
synthesize a matrix P that achieves a stretch of n − 1 on C. In this section
we will describe a construction and proof for a class of matrices C known
as resistive matrices. In Section 4 we will generalize our construction to
arbitrary cost matrices.

Let (σij) be a non-negative symmetric real matrix with zero diagonal.
Build the support graph (V, E), with vertex set V = {1, 2, ..., n} and edge
set E = {(i j) | σij > 0}, and let (V, E) be connected. Consider a network
of resistors based on (V, E), such that the resistor between vertices i and j
has branch conductance σij , or branch resistance 1/σij .

Let cij be the effective resistance between vertices i and j. (A unit voltage
between i and j in this network of resistors results in a current of 1/cij.) We
require that the support graph be connected so that the effective resistances
will be finite.

6

Definition 1 A cost matrix (cij) is resistive if it is the matrix of effective
resistances obtained from a connected non-negative symmetric real matrix
(σij) of conductances. The matrix (σij) is the resistive inverse of C. 2

The following facts are not difficult to prove, and follow from standard
electric network theory [23]. Resistive cost matrices are symmetric, positive
off the diagonal, zero on the diagonal, and satisfy the triangle inequality:
cij + cjk ≥ cik. A principal submatrix of a resistive cost matrix is resistive.

Define two (n − 1) × (n − 1) matrices σ̄, C̄ by

σ̄ii =
∑

j≤n,j 6=i

σij , 1 ≤ i ≤ n − 1, (1)

σ̄ij = −σij , i 6= j, 1 ≤ i, j ≤ n − 1, (2)

c̄ij = [cin + cjn − cij]/2, 1 ≤ i, j ≤ n − 1. (3)

Then σ̄ is the inverse of C̄ :

n−1
∑

j=1

σ̄ij c̄jk = δik. (4)

It can happen that a given cost matrix C = (cij) gives rise to a putative
resistive inverse with some negative conductances:

∃i, j : σij < 0

and in this case there is no resistive inverse for C.
Examples of resistive cost matrices include:

(1) Any three points with the distances satisfying the triangle inequality.
(2) Points on a line: vertex i is at a real number ri, with cij = | ri − rj |.
(3) The uniform cost matrix cij = d, if i 6= j.
(4) Tree closure: given a tree T on n vertices and positive costs for the tree
edges, points are located on the edges of the tree, and the distance between
any pair of points equals the distance between them on the tree. The previous
three examples are particular cases of tree closure.
(5) A cost matrix C given by a graph with m + n vertices x1, x2, . . . , xm,
y1, y2, . . . , yn, m, n > 1, where cxi,xj

= 2m, cyi,yj
= 2n, and cxi,yj

= m + n −
1. The associated resistive inverse is a complete bipartite graph Km,n with

7

resistors of resistance mn on each edge. This example cannot be expressed as
any of the previous examples: for if C were a tree closure, then the midpoint
of the tree path joining x1 and x2 would be at distance n − 1 from both y1

and y2, contradicting cy1,y2 = 2n > 2(n − 1).
If C is a resistive cost matrix, its resistive inverse (σij) provides a way of

synthesizing an optimal random walk P achieving a stretch of n− 1. In fact,
in determining the stretch of a random walk, it suffices to consider sequences
of vertices v1, v2, . . . vℓ, vℓ+1 = i1 that form simple cycles in G. Indeed, assume
that the random walk defined by P has a stretch of c on simple cycles. Any
cycle can be decomposed into the union of disjoint simple cycles, so that the
claim holds for arbitrary closed paths. Let d be the maximum length of an
edge in G. Then, for any path v1, v2, . . . , vℓ we have

ℓ−1
∑

i=1

evivi+1
=

ℓ−1
∑

i=1

evivi+1
+ evℓv1 − evℓv1

≤ c ·

(

ℓ−1
∑

i=1

cvivi+1
+ cvℓv1

)

≤ c ·

(

ℓ−1
∑

i=1

cvivi+1

)

+ c · d.

Let C be a resistive cost matrix, and (σij) be its resistive inverse, Let P
be the resistive random walk on the graph with cost matrix C, i.e.

pij =
σij

∑

k σik
.

Let φi be the steady state probability of vertex i under the random walk P ,
so that

φi =
∑

j

φjpij

and
∑

i

φi = 1.

The following properties of the resistive random walk will prove to be of
much use.

One can verify, by substitution, that

φi =

∑

k σik
∑

gh σgh
.

8

The steady state probability of a move on edge (ij) is

φipij =
σij

∑

gh σgh

and the expected cost of a move is

E =
∑

gh

φgpghcgh =

∑

gh σghcgh
∑

gh σgh

.

By Foster’s Theorem [13, 14, 23] on electric networks,

∑

gh

σghcgh = 2(n − 1),

so that

E =
2(n − 1)
∑

gh σgh

.

The average cost of a round trip to vertex i is [17]

eii = E/φi =
2(n − 1)
∑

k σik

.

Theorem 3.1 Let C = (cij) be a resistive cost matrix and let P be the
resistive random walk on the graph with cost matrix C. Then every cycle
(v1, v2, ..., vℓ, vℓ+1 = v1) has stretch n − 1 :

ℓ
∑

i=1

evivi+1
= (n − 1) ·

ℓ
∑

i=1

cvivi+1
.

Proof: Following Doyle and Snell [10] we define the escape probability
Pesc(ij) to be the probability that a random walk, starting at vertex i, will
reach vertex j before returning to vertex i. Doyle and Snell [10] show that

Pesc(ij) =
1/cij
∑

k σik
.

The average cost of a round trip from vertex i to vertex j and back to vertex
i is

eii/Pesc(i, j) = 2(n − 1)cij = (n − 1)[cij + cji].

9

This cost is also, by definition, eij + eji, so that

eij + eji = (n − 1) · [cij + cji].

So the stretch of any two-cycle is n − 1.
We need a bound on the stretch of any cycle, not just two-cycles. The

stationary probability of traversing the directed edge (ij) is σij/
∑

gh σgh,
which is symmetric because σ is symmetric. Thus our random walk is a
reversible Markov chain [17]. For any cycle (v1, v2, ..., vℓ, vℓ+1 = v1), the ex-
pected number of forward traversals of the cycle (not necessarily consecutive)
is the same as the expected number of backward traversals of the cycle, and
the expected cost per forward traversal is the same as the expected cost per
backward traversal. Thus

ℓ
∑

i=1

evivi+1
=

ℓ
∑

i=1

evi+1vi

=
1

2

[

ℓ
∑

i=1

evivi+1
+

ℓ
∑

i=1

evi+1vi

]

=
1

2

ℓ
∑

i=1

[

evivi+1
+ evi+1vi

]

=
1

2

ℓ
∑

i=1

(n − 1)
[

cvivi+1
+ cvi+1vi

]

=
ℓ
∑

i=1

(n − 1)cvivi+1
.

So every cycle has stretch n − 1. 2

Note that this theorem only holds for cycles, not for individual directed
edges. If

C =







0 1 2
1 0 1
2 1 0





 , (σij) =







0 1 0
1 0 1
0 1 0





 , P =







0 1 0
1/2 0 1/2
0 1 0







then

e21 = 3 > 2 = (n − 1)c21

e12 = 1 < 2 = (n − 1)c12

e21 + e12 = 4 = (n − 1)(c21 + c12).

10

However, we note that since

eij + eji ≤ (n − 1)[cij + cji] = 2(n − 1)cij

we have
eij ≤ 2(n − 1)cij ;

the stretch on individual edges is at most 2(n − 1). Furthermore, if the cost
matrix (cij) fulfils the triangle inequality, then eji ≥ cji, so that

eij ≤ 2(n − 1)cij − eji ≤ (2n − 3)cij .

4 Upper bound — non-resistive case

In this section we prove the existence of a generalized resistive inverse. The
generalized resistive inverse turns out to be the solution to a convex vari-
ational problem, and we present a simple iterative algorithm for finding it.
From the generalized resistive inverse we get an n−1-competitive strategy for
the cat-and-mouse game with an arbitrary positive symmetric cost matrix.

Theorem 4.1 Let C be any positive symmetric cost matrix. Then there is
a unique resistive cost matrix Ĉ with associated conductance matrix σ, such
that ĉij ≤ cij, σij ≥ 0 and ĉij = cij if σij 6= 0.

Thus, σ is the generalized resistive inverse of C.
Proof: For simplicity, we will limit the discussion to the case of the

triangle graph (n = 3), with costs c1,2 = R0, c1,3 = S0, c2,3 = T0, and with
edge conductances σ1,2 = a, σ1,3 = b, σ2,3 = c and corresponding effective
resistances R = R1,2, S = R1,3, T = R2,3. This case will exhibit all the
features of the general case, and yet allow us to get by without cumbersome
subscripts. Please note, however, that for a triangle graph a cost matrix is
resistive if and only if it satisfies the triangle inequality, while for a general
graph the triangle inequality is necessary but by no means sufficient. Needless
to say, we will make no use of this condition for resistivity in our analysis of
the 3-node graph.

We begin by recalling the relevant electrical theory (cf. Weinberg [23] and
Bott and Duffin [6]). The admittance matrix of our network is

K =







a + b −a −b
−a a + c −c
−b −c b + c





 .

11

(In general, the admittance matrix is the matrix (σ̄ij) defined by Equations
(1,2), extended to n.) If one hooks the network up to the world outside so
as to establish node voltages v1, v2, v3, the currents I1, I2, I3 flowing into the
network at the three nodes are given by







I1

I2

I3





 = K







v1

v2

v3





 .

The power being dissipated by the network is

(I1v1 + I2v2 + I3v3) =
(

v1 v2 v3

)

K







v1

v2

v3





 ≥ 0.

The matrix K is non-negative definite, with 0-eigenvector (1, 1, 1). Label its
eigenvalues

0 = λ0 < λ1 ≤ λ2.

On the orthogonal complement P = {v1 + v2 + v3 = 0} of (1, 1, 1), K has
eigenvalues λ1, λ2, and the determinant of K|P — that is, the product of the
non-zero eigenvalues of K — is given by the next-to-lowest order coefficient of
the characteristic polynomial of K, which can be expressed using Kirchhoff’s
tree formula:

det K|P = λ1λ2

= λ0λ1 + λ0λ2 + λ1λ2

=

∣

∣

∣

∣

∣

a + b −a
−a a + c

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

a + b −b
−b b + c

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

a + c −c
−c b + c

∣

∣

∣

∣

∣

= (ab + ac + bc) + (ab + ac + bc) + (ab + ac + bc)

= 3D.

Here the discriminant D = ab + ac + bc is obtained by summing over the
spanning trees of the network the product of the conductivities of the edges
making up the tree (cf. Bott and Duffin [6]), and 3 is the number of nodes
in the network. In the general case, we get

det K|P = nD,

12

because each of the n principal minors contributes D.
The effective resistances are obtained by taking the gradient of log D in

edge-conductance space:

(R, S, T) = (
∂

∂a
log D,

∂

∂b
log D,

∂

∂c
log D) = ∇(a,b,c) log D.

In this case, we get

(R, S, T) =

(

b + c

ab + ac + bc
,

a + c

ab + ac + bc
,

a + b

ab + ac + bc

)

.

The numerators are obtained by summing over all spanning trees containing
one specified edge the product of the conductances of the edges of the tree
other than the specified edge. Since the degree of the denominator is one
greater than the numerator, the units of the quotient are those of inverse
conductance—that is, resistance—just as they ought to be. (This formula
for the effective resistances in terms of spanning trees goes back to Kirchhoff.)

Let Π denote the positive orthant in edge-conductance space

Π = {a, b, c > 0},

and let Π̄ denote its closure, the non-negative orthant

Π̄ = {a, b, c ≥ 0}.

On Π̄ the function
log D = log det K|P − log 3

is concave. As Gil Strang has pointed out to us, this follows from the fact
that on the set of positive definite matrices the function log det is concave
(see [19]). Indeed, up to the additive constant − log 3, the function log D is
obtained by mapping the space of edge-conductances linearly into the space
of linear operators on P and then taking the logarithm of the determinant—
and pulling back a convex function under a non-singular linear map yields a
convex function.

Now let
F (a, b, c) = log D − (R0a + S0b + T0c),

where R0, S0, T0 > 0. The function F is concave and

∇(a,b,c)F = (R − R0, S − S0, T − T0).

13

The extremal problem
max

(a,b,c)∈Π̄
F (a, b, c)

has a unique solution (a0, b0, c0) in the non-negative orthant Π̄. If the solution
lies in the positive orthant Π, then we have

∇(a0,b0,c0)F = 0,

so that R = R0, S = S0 and T = T0, and a honest resistive inverse is obtained.
If the solution lies on the boundary then the Kuhn-Tucker conditions identify
this point as the unique point where

∂F

∂a
|a=a0 ≤ 0,

with
∂F

∂a
|a=a0 = 0

if a > 0, etc. Thus, R ≤ R0, and R = R0 if a > 0, etc. 2

This proof applies as well to the case where we demand that σij = 0 for
certain selected edges (ij), and place no upper bounds on the corresponding
ĉij (i.e. set cij = ∞).

If C = (cij) is resistive, the matrix inversion of Section 3 will find the
associated conductance matrix σ, with ĉij = cij . If C is not resistive — or
even if it is — there is an iterative algorithm that converges to the generalized
resistive inverse whose existence is guaranteed by Theorem 4.1. In presenting
this algorithm we will once again limit the discussion to the case where the
graph is a triangle, and use the same notation as above.

By Foster’s theorem aR + bS + cT = 2, (the 2 here being one less than
the number of nodes in the graph), and hence a0R0 + b0S0 + c0T0 = 2. Thus

(a0, b0, c0) = arg max
(a,b,c)∈Σ̄

D,

where Σ̄ is the closure of the open simplex

Σ = {a, b, c > 0; aR0 + bS0 + cT0 = 2}.

To locate the maximum we can use the knee-jerk algorithm, according to
which we iterate the mapping

T (a, b, c) =
(

a
R

R0
, b

S

S0
, c

T

T0

)

.

14

The rationale behind the knee-jerk algorithm is as follows: we begin by
guessing values of the conductances a, b, c, compute the corresponding effec-
tive resistances R, S, T , and compare these numbers to the desired values
R0, S0, T0. Suppose for a moment that R = 2R0. Then the edge a says to
itself, “The resistance across me is twice what it’s supposed to be; now if
every edge would just double its conductance, then all the resistances would
be cut in half, and my resistance would be just what it’s supposed to be; so
I think I’ll just go ahead and double my own conductance, and hope for the
best.”

And the amazing thing is that everything does indeed work out for the
best, or at least for the better. For as it turns out, the knee-jerk mapping is
a particular instance of a general method known as the Baum algorithm, and
from the theory of the Baum algorithm (see Baum and Eagon [2]) it follows
that the mapping T takes Σ to itself, and strictly increases the objective
function D for any (a, b, c) (other than (a0, b0, c0)) in Σ. And it follows from
this that for any starting guess (a, b, c) ∈ Σ the sequence T n(a, b, c) of iterates
converges to the generalized resistive inverse (a0, b0, c0).

5 The cat-and-mouse game

We now return to the cat-and-mouse game. As an immediate consequence
of Theorem 4.1, we have:

Theorem 5.1 Let G be any weighted graph with n nodes. The cat has an
(n − 1)-competitive strategy for the cat-and-mouse game on G. 2

Note that the strategy we prescribe for the cat is simple and memoryless,
and consists of executing the resistive random walk. The computation of
the transition probabilities P is done once and for all at the beginning of
the game; the execution of the strategy consists simply of making a random
choice at each step. The lower bound on stretch in Theorem 2.1 shows that
no cat strategy based on a random walk can do better. Could a more general
cat strategy do better? The answer depends on whether or not the cat learns,
at the end of each round, that it has caught up with the mouse. The random
walk strategy described above can be thought of as a blind cat: oblivious to
the fact that it has caught the mouse at the end of a round, it walks on.
The only requirement imposed on the mouse is that it must move to a new

15

node whenever the cat arrives at the node it presently occupies. We prove
below that no blind cat can achieve a competitiveness better than n − 1 on
any n-node graph, regardless of how clever its strategy is (the cat can use an
arbitrary randomized algorithm to hunt for the mouse). The proof is inspired
by a lower bound of Manasse et al. [18] for the k-server problem.

Theorem 5.2 For any n×n cost matrix C and any blind cat strategy, there
is a mouse strategy that forces the competitiveness of the cat to be at least
n − 1.

Proof: The cat starts the game at some node v0 of the graph. It then
walks through the graph visiting some (possibly random) sequence of nodes
v1, v2, · · ·, paying a total cost of

∑

i≥1 cvi−1,vi
. We first describe strategies for

n − 1 different mice the sum of whose costs during this time is
∑

i≥1 cvi−1,vi
.

Each of these n − 1 mice will obey the dictum that it move to a new node
whenever the cat arrives at its present location. The proof will then be
completed by choosing one of these n − 1 mouse strategies uniformly at
random at the start of the game, so that the expected cost of the cat is at
least n − 1 times that of the (randomly chosen) mouse.

We now describe the strategies for the n − 1 mice. Each of the n − 1
begins the game at a different node of the graph, with no mouse starting at
v0. Whenever the cat arrives at a node occupied by a mouse, that mouse
moves to the node just vacated by the cat. Thus no mouse ever moves to
a node occupied by one of the other n − 2 mice, so that exactly one mouse
moves at each step. Further, the mouse that moves at each step pays exactly
the same cost as the cat on that step. It follows that the sum of the costs of
the n − 1 mice equals

∑

i≥1 cvi−1,vi
. 2

Thus we have shown that no blind cat can achieve a competitiveness
better than n − 1, and have complemented this with a simple blind cat (the
resistive random walk) that achieves this bound. What if the restriction of
blindness were removed (i.e., the cat is told whenever it catches up with the
mouse)? Baeza-Yates et al. [1] have given (without using the cat-and-mouse
terminology) examples of a number of graphs for which the cat achieves a
constant competitiveness. For instance, when the nodes of the graph are
uniformly spaced on the periphery of a circle, they show that a natural
deterministic strategy achieves a competitiveness of 9.

We conclude this section with another example in which a cat that is
not blind achieves a competitiveness less than n − 1; this example has a

16

different flavor from any of the ones in [1]. The following simple (though not
memoryless) randomized algorithm achieves a competitiveness of n/2 when
the graph is the complete graph on n nodes with the same cost on every
edge: fix a Hamiltonian cycle H through the graph. At the beginning of
each round, the cat flips an unbiased coin to decide whether to traverse H
clockwise or counter-clockwise during that round. Having made this decision,
the cat traverses H in the appropriate direction until it catches up with the
mouse. It is clear that no matter where the mouse is hiding, the expected
cost of the cat in the round is n/2. It is easy to show that for this graph, no
strategy can do better.

6 The Loop Ratio

In this section and in Section 7 we study some additional properties of re-
sistive random walks that will prove to be of use in analyzing algorithms
for metrical task systems in Section 9. Let C be a cost matrix, (σij) be its

generalized resistive inverse, and Ĉ be the resitive matrix such that (σij) is

the resistive inverse of Ĉ: ĉij ≤ cij and ĉij < cij only if σij = 0. The resistive

random walk does not use edges where Ĉ and C differ. Thus, the estimates
given in Section 3 for E, the expected cost of a move and eii the expected
cost of a round trip from vertex i are valid for nonresistive graphs as well:

E =
2(n − 1)
∑

gh σgh
,

and

eii =
2(n − 1)
∑

k σik

.

Let ei be the expected cost of the first move out of node i;

ei =
∑

j

pijcij =

∑

j σijcij
∑

j σij

.

Define the loop ratio at i to be Li = eii/ei, and let the loop ratio of the
walk be defined to be L = maxi Li.

Theorem 6.1 Let P be the transition probability matrix designed by our
procedure. Then L ≤ 2(n − 1) for any cost matrix C on any n-node graph.

17

Proof: We can assume without loss of generality that C is resistive
(otherwise, we replace C by Ĉ, with no change in the loop ratio). We have

Li =
2(n − 1)
∑

j σijcij

∀i.

It suffices to show that the denominator is ≥ 1. To this end, we use the fact
that the matrices σ̄ and C̄ are inverses of each other. Consider the diagonal
element (σ̄C̄)ii of their product; thus

1 = cin

n
∑

j=1

σij −
n−1
∑

j=1

σij(cin + cjn − cij)/2.

Rearranging, we have

1 =
n
∑

j=1

cijσij +
n−1
∑

j=1

σij(cin − cjn − cij)/2. (5)

By the triangle inequality, every term in the second summation is ≤ 0, yield-
ing the result. 2

Notice that Li = 2(n − 1) if and only if every term in the second sum-
mation of (5) is equal to zero. The following simple example demonstrates
that the equality Li = 2(n − 1) can occur. Let cij =| i − j |. This forms a
resistive cost matrix, and yields transition probabilities

p1,2 = pn,n−1 = 1 (6)

pi,i−1 = pi,i+1 = 1/2, 2 ≤ i ≤ n − 1. (7)

Thus the walk is the standard random walk on the line with reflecting barriers
at vertices 1 and n. Clearly, φ1 = φn = 1/(2n−2), so that e1,1 = en,n = 2n−2.
Further, e1 = en = 1.

7 Graphs with Self Loops

The results of Sections 3–6 can be extended to graphs with self-loops. We
assume now that each node is connected to itself by an edge ii with cost
cii > 0. A random walk on this graph is defined by a transition probability

18

matrix (pij), where pii is the probability of using edge ii. The other definitions
extend naturally.

Let C be the cost matrix for a graph G with self-loops, with vertex set V =
{1, . . . , n}. Construct a 2n vertex graph Ĝ without self loops, by adding an
extra vertex on each self loop. The vertex set of Ĝ is V̂ = {1, . . . , n, 1̂, . . . n̂}
and its edge set is Ê = {ij : cij < ∞} ∪ {îi : cii < ∞}. The cost matrix Ĉ
for the new graph is defined by

ĉij = cij, if i 6= j,

ĉîi = ĉîi = cii/2,

ĉiĵ = ĉîj = ĉîĵ = ∞, if i 6= j.

Let p̂rs be the transition probabilities for a random walk on the graph
with cost matrix Ĉ. Then

p̂iĵ = p̂îj = 0, if i 6= j,

and p̂îi = 1. Consider now the random walk for the original graph, with
transition probabilities

pij = p̂ij , if i 6= j

pii = p̂îi.

Let π̂ = u1, u2, . . . , uk be a finite cost path in Ĝ. If uj = î then uj−1 = uj+1 =
i. Let π be the path in G obtained from π̂ by deleting all hatted nodes. Each
loop of the form îii is replaced by a self-loop of the form ii. Then π has the
same cost as π′, and the probability that path π occurs in the random walk
defined by (pij) equals the probability that path π̂ occurs i the random walk
defined by (p̂ij). In particular, the random walks associated with (pij) and
(p̂ij) have the same stretch. Conversely, given a random walk process on G

we can build a random walk process on Ĝ so that corresponding paths (of
the same cost) occur with the same probability.

We define the resistive random walk for an n-vertex graph G with self-
loops to be the random walk derived from the resistive random walk on the
2n-vertex graph Ĝ. We have

Theorem 7.1 Any random walk on a graph with self-loops has stretch ≥
2n − 1. The resistive random walk achieves a stretch of at most 2n − 1;

19

Let C ′ be the cost matrix C, with self-loops omitted (diagonal elements
replaced by zeros). The generalized resistive inverse (σ̂ij) of the cost matrix

Ĉ can be easily derived from the generalized resistive inverse (σ′
ij) of the

cost matrix C ′. Indeed, let D′ be the discriminant for the matrix C ′ and let
D̂ be the discriminant for the matrix Ĉ. Bearing in mind that the discrim-
inant is the sum, over all spanning trees of the graph, of the product of the
conductances of the edges in the spanning tree, we obtain that

D̂ = D′ ·
∏

i

ĉîi = 2−n · D′ ·
∏

i

cii.

Thus, the generalized resistive inverse for Ĉ is the solution to the extremal
problem

max
σ̂gh≥0

log D̂ −
∑

gh σ̂ghĉgh

= max
σ̂gh≥0

log D′ −
∑

ij cijσ̂ij +
∑

i(log σ̂îi − ciiσ̂îi/2).

The solution to this problem is given by

σ̂ij = σ′
ij, σ̂îi =

2

cii

.

Let p′ij be the transition probabilities of the resistive random walk on the
loopless graph with cost matrix C ′, and pij be the transition probabilities
for the resistive random walk on the graph with loops with cost matrix C.
Then,

pij =
σ̂ij

∑

k σ̂ik
=

σ′
ij

∑

k σ′
ik + 2/cii

,

and

pii =
2/cii

∑

k σ′
ik + 2/cii

.

It follows that the conditional probability that the random walk uses edge
ij, given that it does not use the self-loop ii, is

pij/(1 − pii) =
σ′

ij
∑

k σ′
ik

= p′ij .

Thus, the resistive random walk on a graph with self-loop is obtained from a
probabilistic process whereby one first chooses whether to stay at the same

20

node; then, if the decision is to move to a new node, a move is made in the
resistive random walk on the graph without loops.

Also,

lim
cii→0

1 − pii

cii
=

1

2

∑

k

σ′
ik.

Note that cii/(1−pii) is the expected cost of a sequence of moves starting from
node i and ending at the first move out of node i (i.e., a maximal sequence
of consecutive moves on the edge ii). We recall that e′ii, the expected cost
of a round trip from vertex i and back in the graph with cost matrix C ′, is
given by

e′ii =
2(n − 1)
∑

k σ′
ik

.

Thus,

lim
cii→0

cii

1 − pii
=

e′ii
n − 1

.

In the limit, when the cost of a self-loop goes to zero, the expected cost of
consecutive moves up to the first move out of node i is 1/(n − 1) times the
expected cost of a round trip from node i (ignoring self-loops).

8 The k-Server Problem

We consider now the k-server problem of Manasse et al. [18] defined in Sec-
tion 1. We compare the performance of an on-line k-server algorithm to the
performance of an adversary with k servers. The adversary chooses the next
request at each step, knowing the current position of the on-line algorithm,
and moves one of its servers to satisfy the request (if necessary). The on-
line algorithm then moves one of its servers if necessary, without knowing
the position of the adversary. The moves of the on-line algorithm may be
probabilistic. The game stops after a fixed number of steps. The algorithm
is c-competitive if there exists a constant a such that, for any number of
steps and any adversary, E[cost on-line algorithm] ≤ c · [cost adversary] + a.
Such an adversary is said to be an adaptive on-line [3, 21] adversary. One
can weaken the adversary by requiring it to choose the sequence of requests
in advance, so that it does not know of the actual random choices made by
the on-line algorithm in servicing the request sequence; this is an oblivious

21

adversary. Alternatively, one can strengthen the adversary by allowing it to
generate the requests adapting to the on-line algorithm’s moves, but to post-
pone its decisions on its server moves until the entire sequence of requests
has been generated; this is an adaptive off-line adversary. These three types
of adversaries for randomized algorithms are provably different [3, 11, 21].
However, they all coincide when the on-line algorithm is deterministic. Fur-
thermore, if there is a randomized algorithm that is c-competitive against
adaptive on-line adversaries, then there is a c2-competitive deterministic al-
gorithm [3].

The cache problem where we manage a fully associative cache with k
locations is a special case of the k-server problem [18]: we have a vertex
for each possible memory item, and a uniform cost matrix with unit costs
cij = 1. The weighted cache problem, where the cost of loading various items
in cache may differ, is also an instance of the k-server problem [18, 21]: we
have one vertex for each memory item, and a cost matrix cij = (wi + wj)/2,
where wi is the cost of loading item i in cache. (We are charging for each
cache miss half the cost of the item loaded and half the cost of the item
evicted; this yields the same results as if we were charging the full cost of the
loaded item only.) Such a cost matrix corresponds to the distances between
leaves in a star tree, where vertex i is connected to the star root by an edge
of length wi/2.

Theorem 8.1 Let C be a resistive cost matrix on n nodes. Then we have a
randomized k-competitive strategy for the k-server problem against an adap-
tive on-line adversary. More generally, if every (k + 1)-node subgraph of C
is resistive, we have a k-competitive strategy for the k-server problem on C.

Proof: We exhibit a k-competitive randomized on-line algorithm for the
more general case; we call this algorithm RWALK. If a request arrives at one
of the k vertices that RWALK’s servers cover (let us denote these vertices
by a1, a2, ..., ak), it does nothing. Suppose a request arrives at a vertex ak+1

it fails to cover. Consider the (k + 1)-vertex subgraph C ′ determined by
a1, a2, ..., ak, ak+1. By hypothesis, C ′ is resistive. Let σ′ denote its resistive
inverse. With probability

p′i =
σ′

i,k+1
∑k

j=1 σ′
j,k+1

22

it selects the server at vertex ai to move to vertex ak+1. Since C ′ is finite, σ′

is connected, and the denominator
∑k

j=1 σ′
j,k+1 is nonzero, the probabilities

are well defined and sum to 1.
We need to prove that the RWALK is k-competitive. To this end, we

define a potential Φ. (This is not to be confused with an electrical potential.)
Say the RWALK’s servers are presently at vertices a = {a1, a2, ..., ak}, and
the adversary’s servers are presently at vertices b = {b1, b2, ..., bk}, where a

and b may overlap. We define Φ(a,b) as the sum of the costs of all the edges
between vertices currently occupied by RWALK’s servers, plus k times the
cost of a minimum-weight matching between vertices occupied by RWALK’s
servers and the adversary’s servers. That is,

Φ(a,b) =
∑

1≤i<j≤k

cai,aj
+ min

π
k ·

k
∑

i=1

cai,bπ(i)
,

where π ranges over the permutations on {1, 2, ..., k}. We also define a quan-
tity ∆ depending on the present position and the past history:

∆(a,b, History) = Φ(a,b) + (RWALK’s Cost) − k · (Adversary’s Cost),

where both “Cost”s are cumulative. We will show that the expected value
of ∆ is a non-increasing function of time, and then show how this will imply
the theorem.

Let us consider the changes in ∆ due to (i) a move by the adversary
(which could increase Φ), and (ii) a move by RWALK, which (hopefully)
tends to decrease Φ. By showing that in both cases, the expected change
in ∆ is ≤ 0, we will argue that over any sequence of requests the expected
cost of RWALK is at most k times the adversary’s cost plus an additive term
independent of the number of requests.

If the adversary moves one of its servers from bj to b′j , its cumulative cost
is increased by cbj ,b′

j
. The potential Φ can increase by at most k times that

quantity, since the minimum-weight matching can increase in weight by at
most cbj ,b′

j
. (Obtain a new matching π′ from the old one by matching aπ−1(j)

to b′j instead of bj , and note that the weight of this new matching is no more
than cbj ,b′

j
plus the weight of the old one; the new minimum-weight matching

will be no heavier than this constructed matching.) So in this case ∆ does
not increase.

23

Next, we consider a move made by RWALK, and compare its cost to the
expected change in Φ. First, we suppose that a and b overlap in k−1 places
(later we remove this assumption):

ai = bi, i = 2, 3, ..., k; a1 6= b1.

Define bk+1 = a1. For convenience, set m = k + 1, and let cij, σij , for i, j
= 1, 2, ..., m be defined by cij = cbi,bj

. Recall equations (1-4) relating σ and
C, specialized to the entries of interest:

σ̄11 =
m
∑

j=2

σ1j

σ̄1j = −σ1j , 2 ≤ j < m

c̄ji = [cjm + cim − cji]/2
m−1
∑

j=1

σ̄1j c̄ji = δ1i, i < m

Multiply this last equation by 2 and sum over i = 2, 3, ..., m − 1, noticing
that in this range δ1i = 0. We obtain:

0 = 2
m−1
∑

i=2

m−1
∑

j=1

σ̄1j c̄ji

= 2
m−1
∑

i=2



σ̄11c̄1i +
m−1
∑

j=2

σ̄1j c̄ji





=
m−1
∑

i=2







m
∑

j=2

σ1j [c1m + cim − ci1] −
m−1
∑

j=2

σ1j [cjm + cim − cji]







For j = m the latter bracketed expression [cjm + cim − cji] is zero, so we
can include it in the sum, extending the limits of summation to m:

0 =
m−1
∑

i=2







m
∑

j=2

σ1j [c1m + cim − ci1] −
m
∑

j=2

σ1j [cjm + cim − cji]







=
m
∑

j=2

σ1j

[

(m − 2)c1m +
m−1
∑

i=2

cim −
m−1
∑

i=2

ci1 − (m − 2)cjm −
m−1
∑

i=2

cim +
m−1
∑

i=2

cji

]

24

=
m
∑

j=2

σ1j

[

(m − 1)c1m −
m
∑

i=2

ci1 − (m − 1)cjm +
m
∑

i=2

cji

]

=
m
∑

j=2

σ1j



(m − 1)c1m −
m
∑

i=2

ci1 − (m − 1)cjm +
∑

1≤i≤m, i6=j

cji − cj1





Defining

τℓ = (m − 1)cℓm +
∑

1≤i<j≤m, i,j 6=ℓ

cij = (m − 1)cℓm +
∑

1≤i<j≤m

cij −
m
∑

i=1

ciℓ

we discover
m
∑

j=2

σ1j [τ1 − τj − cj1] = 0.

The value of Φ before RWALK makes its move is τ1. If the server at aj is
moved then the value of Φ after ther move is τj , and the cost of the move
is cj1. Thus, the expected change in ∆, as RWALK makes its random move
with probability (σ1j)/(

∑m
i=2 σ1i), is

1
∑m

i=2 σ1i
×

m
∑

j=2

σ1j [τj − τ1 + cj1] = 0.

The expected change in ∆ is zero on RWALK’s move.
Finally, we verify the case in which a and b overlap in fewer than k −

1 vertices, and RWALK makes a move. Suppose the request is at vertex
b1. Suppose the current minimum-weight matching pairs ai with bi, i =
1, 2, . . . , k. Let b′1 = b1, and b′i = ai, i = 2, . . . , k. Let Φ′ be the potential
computed using b′, rather than b. We obtain, from the previous analysis,
that the expected decrease in Φ′ is equal to the expected cost of RWALK’s
move. The true potential Φ differs from Φ′ only in the weight of the minimum-
weight matching. Suppose that RWALK moves the server at aj to b1. Then,
Φ′ decreases by

ca1,aj
− ca1,b1.

Consider a new matching, not necessarily of minimum weight, after our cur-
rent move from aj to b1, obtained from the old matching by matching a1 to
bj , aj to b1, and ai to bi for i 6= 1, j. This new matching differs from the old
one by

ca1,bj
− ca1,b1 − caj ,bj

≤ ca1,aj
− ca1,b1

25

by the triangle inequality. Thus, Φ decreases by at least ca1,aj
− ca1,b1 . It

follows that the expected decrease of Φ is no smaller than the expected
decrease of Φ′ and, hence, no smaller than the expected cost of RWALK’s
move.

So the expected value of

∆(a,b, History) = Φ(a,b) + (RWALK’s Cost) − k · (Adversary’s Cost)

is nonincreasing at every step. Since Φ is positive, we find that

(RWALK’s Cost) − k · (Adversary’s Cost)

remains bounded, in expectation, by the initial value of ∆. So the competi-
tiveness is k. 2

The last result is valid even if the graph is infinite; one only requires that
the cost of a simple path be bounded and every k + 1-node subgraph be
resistive. The potential Φ we developed to prove the last result seems to be
very natural and useful for the server problem. It has been subsequently used
by several authors [8, 9] for analyzing algorithms for the k-server problem.
While the second term in our potential function (involving the minimum
weight perfect matching) is a natural measure of the distance between an
on-line algorithm’s servers and those of an off-line algorithm, the first term
(
∑

1≤i<j≤k cai,aj
) was originally motivated by the hitting potentials of the

random walk P on a graph with cost matrix C.
As corollaries of Theorem 8.1, we have optimal k-competitive randomized

algorithms against an adaptive on-line adversary for the two server problem
(k = 2) in any metric space [18], for servers on a line [8], for the uniform
cost (cache) problem [22], for the weighted cache problem [8, 21], and for
servers on a tree [9]. These algorithms are extremely simple, and memo-
ryless. Berman et al. [4] prove that the HARMONIC algorithm [21] for 3
servers achieves a finite competitiveness in any metric space, and Grove [15]
shows that this is true for all k. Recently, Fiat, Rabani and Ravid [12] have
announced a deterministic k-server algorithm that achieves a competitiveness
bounded by some function of k. At present, all known cases where we know
of k-competitive on-line algorithms are in (special cases of) resistive met-
ric spaces. Our theory based on resistive random walks unifies our current
picture of the k-server conjecture, and implies k2-competitive deterministic
algorithms in resistive spaces [3].

26

Our algorithm does not yield k-competitive algorithms in every graph.
The smallest counterexample we know of consists of a 3-server problem on a
five-node graph. The five nodes can be thought of as being on the periphery
of a circle of circumference 8 centered at the origin. One node lies on the
x-axis, and the others are at counter-clockwise distances 1,3,5 and 6 from it
along the circumference. In this case it is possible to give an infinite request
sequence on which the competitiveness of our algorithm exceeds 3 (we do
not know that it can be arbitrarily large, however). Moreover, as we show
below, a simple modification of our algorithm achieves a competitiveness of
at most 2k for points on the periphery of a circle.

Theorem 8.1 can be used to derive randomized competitive k-server algo-
rithms for non-resistive spaces as well, when these can be approximated by
resistive spaces. For real λ > 1, a cost matrix C ′ is a λ-approximation for the
matrix C if, for all i, j, c′ij/λ ≤ cij ≤ c′ij . If a server algorithm is g-competitive
for the matrix C ′, then it is λg-competitive for the matrix C. Using this ob-
servation, we can derive a 2k-competitive algorithm for k servers on a circle,
with distances being measured along the circumference. Consider points on
a circle, with the cost cij between two points i, j given as the distance along
the smaller arc joining them. We can construct a 2-approximation C ′ to this
cost C. Each arc of the circle becomes a resistor with resistance equal to the
arc-length. If the smaller and larger arc distances joining two points are a, b
respectively, then the effective resistance c′ is ab/(a + b) while c = a ≤ b.
Then easily c′ ≤ c ≤ 2c′. In conjunction with results in [3], this implies that
there is a 4k2-competitive deterministic algorithm for k servers on the circle.

In the preceding paragraph, we made use of the fact that the distance
matrix induced by a set of points on a circle has a resistive 2-approximation.
For some metric spaces this is not possible.

Theorem 8.2 For any λ > 1 there is a finite set of points in the Euclidean
plane for which the Euclidean distance matrix cannot be λ-approximated by
any resistive cost matrix.

Proof: In what follows, let L(x, y) denote the Euclidean distance be-
tween two points, and R(x, y) the distance between them in the putative
λ-approximation, so that L(x, y)/λ ≤ R(x, y) ≤ L(x, y).

Given two points w, y, we define the rhombus construction on (w, y) as
follows. Construct a rhombus whose major diagonal, the line segment (w, y),

27

w y

z

x

a

b

d

ce
f

�
�

�
�

�
�

H
H

H
H

H
H�

�
�

�
�

�

H
H

H
H

H
H

Figure 1: The Euclidean plane has no resistive approximation.

has length 2ℓ ≡ L(w, y), and whose minor diagonal (x, z) has length L(x, z) =

ℓ/λ. Of course L(w, x) = L(x, y) = L(y, z) = L(z, w) = ℓ
√

1 + 1/(2λ)2.
Let the effective resistances be as given in Figure 1; for example, f =

R(w, y). We have

e = R(x, z) ≥ L(x, z)/λ = ℓ/λ2,

and
f = R(w, y) ≤ L(w, y) = 2ℓ,

so that
e ≥ f/(2λ2).

Assume without loss of generality that c = max(a, b, c, d). Suppose the four-
point network (w, x, y, z) has a resistive inverse. Consider the distance matrix
C for these four points and the associated matrix C̄ (recall the definitions in
Section 3):

C =











0 a f b
a 0 d e
f d 0 c
b e c 0











, C̄ =
1

2







2b b + e − a b + c − f
b + e − a 2e c + e − d
b + c − f c + e − d 2c





 .

Inverting C̄ to find σ̄, and demanding that the link (w, y) have nonnega-
tive link conductance, we find

0 ≥ (b + e − a)(c + e − d) − 2e(b + c − f)

= e[e + 2f − (a + b + 2c)] + (e + b − a)(c − d)

28

By the triangle inequality, e + b − a ≥ 0, and by assumption c − d ≥ 0, so
that 0 ≥ e + 2f − (a + b + 2c); that is,

4c ≥ a + b + 2c ≥ 2f + e ≥ f
(

2 +
1

2λ2

)

,

so that

c ≥ f
(

1

2
+

1

8λ2

)

.

It follows that

R(x, y)

L(x, y)
≥

R(w, y) (1/2 + 1/8λ2)
1
2
L(w, y)

√

1 + 1/4λ2

=

(

R(w, y)

L(w, y)

)

√

1 +
1

4λ2
.

For at least one of the four sides (x, y) of the rhombus, the ratio R(x, y)/L(x, y)
is greater than the corresponding ratio for the major diagonal R(w, y)/L(w, y)

by a factor of at least
√

1 + 1/4λ2.
Now we build the promised counterexample. Set

K = 1 + ⌊log λ/ log
√

1 + 1/(4λ2)⌋.

Begin with a pair of points w, y in the plane. Perform the rhombus construc-
tion on (w, y). For each of K steps, perform the rhombus construction on
each of the sides (w, x), (x, y), (y, z), (z, w) constructed during the previous
step. Suppose we have a λ-approximation to the Euclidean metric on this
finite graph. Set w0 = w, y0 = y. Iteratively for k = 1, 2, ..., K, let (wk, yk) be
that side of the rhombus constructed on (wk−1, yk−1) with the largest effective
resistance R. We get

(

R(wK , yK)

L(wK , yK)

)(

R(w0, y0)

L(w0, y0)

)−1

≥
(

√

1 + 1/(4λ2)
)K

> λ,

a contradiction. So no such λ-approximation can exist. We conclude that
there is no resistive network whose effective resistance approximates distances
in the Euclidean plane within a constant factor. 2

Thus, the approximation technique does not solve the server problem in
the plane.

We now turn to the case k = n − 1.

29

Theorem 8.3 Let C be any cost matrix on n nodes. Then RWALK is an
(n − 1)-competitive strategy for the k = n − 1 server problem on C.

Note that Theorem 8.3 holds even when the cij do not satisfy the triangle
inequality.

Proof: Both the on-line algorithm and the adversary have one un-
occupied node which we consider, respectively, to be “cat” and “mouse”.
Whenever a server moves from i to j the cat (resp. the mouse) moves from
j to i, at cost cij = cji. We can assume that the adversary always requests
the unique node (cat’s position) which is not occupied by the on-line algo-
rithm (see [21]). It has to move one of its own servers to satisfy this request
only when the positions of the cat and of the mouse coincide. This situation
corresponds exactly to the cat-and-mouse game, and the result follows from
Theorem 5.1. 2

9 Metrical Task Systems

We now consider Metrical Task Systems, introduced by Borodin et al. [5]. A
metrical task system has the set S of positions {1, 2, · · ·n} with an associated
cost matrix C (positive off-diagonal, zero on diagonal, symmetric, triangle
inequality) where cij is the cost of moving between position i and position j.
An algorithm can reside in exactly one of the positions at any time. A task
is a vector T = (T (1), T (2), · · ·T (n)) where T (j) is the cost of processing t
while in position j. Given a sequence of tasks T = T 1, T 2 · · ·, an algorithm
must decide for each task T i the position σ(i) it is processed in. The cost of
this schedule is the sum of all position transition costs and task processing
costs:

c(T ; σ) =
∑

i

cσ(i−1),σ(i) +
∑

i

T i(σ(i)).

An on-line algorithm must decide on σ(i) before knowledge of any task
σ(j), j > i. The next position may be chosen probabilistically.

Here too, we consider adaptive on-line adversaries that generate the se-
quence of tasks and satisfy them on-line: the adversary selects the next task
at each step, knowing the current state of the on-line algorithm, and possibly
changes position to satisfy the request. An on-line algorithm is c-competitive
if there exists a constant a such that, for any number of steps and any on-line
adversary, E[cost of on-line algorithm] ≤ c · E[cost adversary] + a. One can

30

weaken the adversary to be oblivious, and require it to choose the sequence
of tasks in advance. Or, one can strengthen it to be adaptive off-line, by
allowing it to postpone its decision on its moves until the entire sequence of
tasks has been generated.

In this section, we give a lower bound of 2n−1 on the competitiveness of
any randomized on-line algorithm against such an adaptive on-line adversary,
and complement this with a simple, memoryless randomized algorithm that
achieves this bound.

Borodin et al. [5] define an on-line algorithm for metrical task systems to
be a traversal algorithm if:
(1) The positions are visited in a fixed sequence s1, s2, · · · independent of the
input task sequence T .
(2) There is a sequence of positive threshold costs c1, c2, · · · such that the
transition from sj to sj+1 occurs when the total task processing cost incurred
since entering sj reaches cj. In fact, they set cj = csj ,sj+1

. Thus, the total
cost incurred by the on-line algorithm is exactly twice the moving cost.

There is a technical difficulty to take care of: the accumulated cost in-
curred at a node can jump substantially above the threshold cj . Borodin et
al. overcome this difficulty by considering continuous schedules, where posi-
tion changes can occur at arbitrary real points in time, and a task may be
processed in several positions for fractional periods of time (the ith task is
continuously serviced during the ith time interval). Thus, a transition al-
ways occurs when the accumulated cost exactly reaches the threshold. Such
a continuous schedule can always be replaced by a discrete schedule which
is no worse: if the continuous schedule visits several positions during one
time interval, then the corresponding discrete schedule will stay in that po-
sition where the current task is cheapest to process. The state of an on-line
algorithm consists of its “virtual position”, the position it would arrive at
using a continuous schedule, and of the accumulated processing cost at that
virtual position. The real position of the algorithm may be distinct from its
virtual position. We shall analyze the costs of the algorithm assuming it uses
a continuous schedule and is at its virtual position, bearing in mind that real
costs are no larger. The reader is referred to [5] for details.

We begin with a negative result:

Theorem 9.1 For any metrical task system with n positions, no randomized
algorithm achieves a competitiveness lower than 2n − 1 against an adaptive

31

on-line adversary.

An immediate corollary of Theorem 9.1 is a lower bound of 2n−1 for de-
terministic algorithms for metrical task systems; although this result appears
in [5], our proof here seems to be considerably simpler. The proof strategy
uses ideas from the proof of Theorem 5.2.

Proof of Theorem 9.1: Let N be the length of the request sequence.
Let us denote the on-line algorithm by R. The adversary will be a cruel
taskmaster (in the terminology of Borodin et al. [5]): at each step, it presents
R with a task with processing cost ǫ at that position that is currently occupied
by R, and zero in all other positions. The value of ǫ will be specified later.
Given the initial position of R, let RM denote the expected cost that R
pays in moving between positions in response to a sequence of length N
generated by a cruel taskmaster; let RP denote the expected cost that R
pays in processing tasks, and let RT = RM + RP denote the expected total
cost incurred by R.

We distinguish between two cases.
Case 1: RM/RT < (n − 1)/(2n − 1).

We give an on-line algorithm for the adversary whose expected cost is at most
RM/(n−1); since RT > (2n−1)RM/(n−1), the lower bound on competitive-
ness follows. We derive this algorithm by first giving n−1 on-line algorithms
that together pay an expected total cost of RM ; the adversary selects one of
these uniformly at random to achieve the expected cost RM/(n − 1).

We now describe the n − 1 possible on-line algorithms for the adversary.
Each starts at at different one of the n − 1 positions not occupied initially
by R. Whenever one of these algorithms faces a task having positive cost
in its current position, it moves to that position just vacated by R. It is
easy to see that no two of these algorithms ever enter the same position, so
that at most one moves in response to any task. None of these n− 1 on-line
algorithms ever pays a cost for task processing, and their total moving cost
equals the total moving cost of R on the sequence. Thus the expected total
cost of these n − 1 on-line algorithms is RM as desired.

Case 2: RM/RT ≥ (n − 1)/(2n − 1).
In this case (by simple manipulation) RT ≥ (2n−1)RP/n. Let d = mini,j cij ;
this is the minimum moving cost an algorithm must pay anytime it moves.
We will choose ǫ to be small compared to d. On the request sequence of
N tasks, let N1 be the number of tasks to which R responds by moving to

32

a new position (incurring a cost of at least d for each of these moves), and
N2 = N −N1 the number of tasks on which R remains in its position. Thus
RP = ǫN2.

We will exhibit an on-line algorithm for the adversary paying an expected
total cost of ǫN/n on the sequence. If N1 > (2ǫ/d)N , we are done because
the moving cost paid by R is at least 2ǫN , which is bigger than 2n− 1 times
the cost of the adversary’s algorithm. Therefore assume N1 < (2ǫ/d)N , so
that N2 ≥ N(1 − 2ǫ/d). Thus

RP ≥ ǫN(1 −
2ǫ

d
),

and therefore

RT ≥
2n − 1

n
ǫN(1 −

2ǫ

d
).

It remains to exhibit an on-line algorithm for the adversary whose ex-
pected cost on this sequence is at most ǫN/n. We do so by giving n possible
on-line algorithms for the adversary that together pay a cost of ǫN ; choosing
randomly from among them will yield the result as in Case 1. Each of the n
algorithms stays in a different one of the n positions throughout the game,
never moving at all. Thus these n on-line algorithms never pay any moving
costs, and their net task processing cost on any sequence equals Nǫ. Thus
their expected total cost is ǫN , as claimed.

The proof is completed by letting ǫ go to zero, much as in the proof of
Borodin et al. [5]. 2

Ben-David et al. [3] have studied the relative powers of the adaptive
on-line and adaptive off-line adversaries. They show, in a very general game-
theoretic setting (see also [21]), that randomization affords no benefit against
an adaptive off-line adversary. More precisely, they showed that if the com-
petitiveness of any deterministic algorithm is at least c, then no randomized
algorithm can achieve a competitiveness lower than c against an adaptive off-
line adversary. They left open the possibility that in some situations, an on-
line algorithm could do better against an adaptive on-line adversary. There
is a lower bound of k on the competitiveness of any algorithm [18, 21] for
the k-server problem against an adaptive on-line adversary; for many special
cases of the problem k is also an upper bound. Theorem 9.1 provides fur-
ther evidence that randomization affords no help against an adaptive on-line
adversary, proving as it does an analogous result for metrical task systems.

33

We now give two simple randomized algorithms for the metrical task
systems of Borodin et al. [5]. The first is a variant of the traversal algorithm
of Borodin et al. [5], and is 4(n−1)-competitive — the traversal algorithm of
Borodin et al. [5] is 8(n−1)-competitive. We then make a slight modification
to our algorithm to obtain a simple, traversal algorithm that is (2n − 1)-
competitive. A further modification of this algorithm yields a memoryless
algorithm that is (2n − 1)-competitive. This is optimal against an adaptive
on-line adversary, as we have shown in Theorem 9.1. Borodin et al. [5] present
a deterministic algorithm that is (2n − 1)-competitive, but their algorithm
differs from ours in that it is not a traversal algorithm, and uses memory.

Our first algorithm is similar to a traversal algorithm, with two changes:
(i) We do not employ a single fixed sequence of positions for the traversal, but
rather execute a random walk through the positions following the transition
probabilities derived from a resistive inverse (or its modification as in section
4) of the distance matrix d of the task system. The set of positions we visit
is nevertheless independent of T .
(ii) Let ei be the expected cost of a move out of position i, given that we
are currently at position i. We make a transition out of the current position
s when the total task processing cost incurred since entering this position
equals ei (the machinery of continuous schedules is used to achieve equality).

This algorithm still has the property that the expected total cost incurred
by the on-line algorithm is twice the expected cost of the moves done by the
algorithm, for any adversary strategy. The design of the random walk is
done once at the beginning, and assigns to each position the next-position
transition probabilities. This determines the move threshold costs ei for all
positions i. Thus, the algorithm is on-line. It is not memoryless, since it uses
a counter for the accumulated task processing cost in the current position.

Theorem 9.2 The above algorithm based on a random walk with stretch c
and loop ratio ℓ is 2 max(c, ℓ)-competitive.

Proof: We can assume without loss of generality that the adversary is a
“cruel taskmaster” that generates a task which has positive cost only at the
position currently occupied by the on-line algorithm. Also, one can assume
without loss of generality that the adversary changes position only at the
time the on-line adversary reaches its current position.

We consider the computation as consisting of a sequence of phases; a
new phase starts when the on-line algorithm reaches a position where the

34

adversary currently is. Suppose this is position i. There are two possibilities:
(i) The adversary moves to position j at the start of the current phase, and
then stays put at j during the entire phase. The adversary has then a cost
of cij for the current phase, whereas the on-line algorithm has an expected
moving cost eij .
(ii) The adversary stays put in position i during the entire phase. Then the
adversary has a cost of ei, whereas the on-line algorithm has an expected
moving cost of eii, for the current phase.

We distinguish moving phases, where the adversary changes position,
and staying phases, where the adversary stays in the same position. Then
E[on-line moving costs in moving phases] ≤ c · (adversary cost of moving
phases) + a, and E[on-line moving costs in staying phases] ≤ ℓ · (adversary
cost in staying phases). The theorem follows from the fact that the total
expected costs of the on-line algorithm are twice its moving costs. 2

The resistive random walk has a stretch of n− 1 and loop ratio 2(n− 1),
thus yielding a 4(n − 1)-competitive algorithm.

We apparently gain the factor of 2 over the Borodin et al. [5] traversal
algorithm because they round up all edge costs to the nearest power of 2,
whereas we avoid this rounding and directly use the edge costs for our resis-
tive inverse. We now describe a modification that brings the competitiveness
of our algorithm down to 2n− 1. In the traversal algorithm described above
(and in that of Borodin et al. [5]), we move out of position j when the cu-
mulative task processing cost incurred in that position reaches the expected
cost of the next move; instead, we will now make the move when the task
processing cost in j reaches βj , where βj is a threshold associated with vertex
j. This allows us to introduce two improvements:
1. The loop ratio Lj is not the same for all j, so that some positions are
better for the off-line adversary to “stay put” in than others. The choice of
different thresholds will compensate for this imbalance.
2. In our traversal algorithm, we fared better against an adversary who
moved than we did against an adversary who stayed at one place; we will
correct this imbalance as well in the improved scheme.

Let pij be the transition probabilities for the resistive random walk on
matrix C, let eii be the expected cost of a round trip from i, and let ei be
the expected cost of a move out of node i, given that the current position is

35

i. Our choice of βi will be

βi =
2

∑

j σij

=
eii

(n − 1)
.

We show below that this corrects both the imbalances described above.

Theorem 9.3 The modified random traversal algorithm is (2n−1)-competitive.

Proof: The proof is similar to the proof for the previous theorem.
We can assume without loss of generality that the adversary is a “cruel
taskmaster” and changes position only at the time the on-line adversary
reaches its current position. As we saw in Section 3, the average cost of
a move of the on-line algorithm is E = 2(n − 1)/

∑

gh σgh, and the steady
state probability of vertex i is φi =

∑

j σij/
∑

gh σgh. Thus, the expected task
processing cost per move is

∑

i φiβi = 2n/
∑

gh σgh. It follows that in our
random walk, the expected ratio of total cost to move cost is (2(n − 1) +
2n)/2(n− 1) = (2n− 1)/(n− 1). Thus, it suffices to show that the expected
moving costs of the on-line algorithm are at most n − 1 times the costs of
the adversary.

We proceed as in the proof of the previous theorem, assuming a continuous
schedule, and distinguishing between staying phases, where the adversary
does not move, and moving phases, where the adversary changes positions.

The cost for the adversary of a staying phase starting (and ending) at
node i is βi; the expected moving cost of that phase for the on-line algorithm
is eii = (n − 1)βi. The sequence of moving phases can be analyzed as a cat
and mouse game, thus also yielding a ratio of n − 1. 2

The last algorithm is not memoryless: it needs to store the present vir-
tual node, and a counter for the accumulated task processing cost at that
node. We replace this counter by a “probabilistic counter”, thus obtaining
a memoryless algorithm. Consider the following continuous traversal algo-
rithm: if the on-line algorithm is at position i and the cost of the current
task at position i is w, then the length of stay of the algorithm at position
i is exponentially distributed, with parameter w/βi. One can think of the
algorithm as executing a continuous, memoryless process that decides when
to move. The probability of a move in any interval depends only on the
interval length, and the expected length of stay is βi/w. Such a process is
the limiting case of a sequence of Bernoulli trials executed at successively

36

shorter intervals, i.e. the limit case of a traversal algorithm of the previous
form.

Before we analyze this algorithm, we introduce two modifications. It
turns out that the ith task can be processed at any of the positions visited
during the ith unit interval. We shall assume it is processed in the last
such position. Also, one need not visit the same position more than once
during one time interval. The modified algorithm MEMORYLESS is formally
described below.

Let (pij) be the transition probabilities for the resistive random
walk on the system graph. Assume the on-line algorithm is
presented with task T (1), . . . , T (n). Let p′ii = e−T (i)/βi , and
p′ij = (1 − e−T (i)/βi)pij, if i 6= j. The random algorithm ex-
ecutes a random walk according to the probability distribution
p′ij , until it returns to a position already visited. It then selects
this position as its new position.

(In reality, one need not execute an unbounded sequence of random
moves. Given the cost vector T (1), . . . , T (n), and the probabilities pij one
can compute directly the probability that position j will be selected by the
experiment, for each j. One can then select the next position by one random
choice.)

Algorithm MEMORYLESS is memoryless: the next position depends
only on the current position and the current task.

Theorem 9.4 Algorithm MEMORYLESS is (2n − 1)-competitive.

Proof: We begin be observing that we can assume without loss of
generality that the adversary generates only “cruel” tasks that have nonzero
cost only at the position occupied by the on-line algorithm. Intuitively, the
submission of a task with several nonzero costs amounts to the submission of
several unit tasks in one batch; the adversary gives up some power to adapt
by doing so. Formally, suppose that the on-line algorithm is in position i,
and the adversary generates a task T = (T (1), . . . , T (n)), and moves to a
new position s. Assume, instead, that the adversary generates a sequence of
cruel requests, according to the following strategy:

Generate a task with cost T (i) in position i, 0 elsewhere; if the on-line
algorithm moves to a new position j, then generate the task with cost T (j)

37

in position j, zero elsewhere; continue this way, until the on-line algorithm
returns to an already visited position. The adversary moves to position s at
the first step in this sequence.

One can check the following facts:
(1) The probability that the on-line algorithm is at position j at the end of
this sequence of requests, is equal to the probability that the on-line algo-
rithm moves to position j when submitted task T .
(2) The expected cost for the adversary of the sequence of tasks thus gener-
ated is ≤ T (s), the cost of T for the adversary. Indeed, the sequence may
contain at most one task with non-zero cost T (s) at position s.
(3) The expected cost for the on-line algorithm of the sequence of tasks thus
generated is ≥ the cost of T for the on-line algorithm. Indeed, if j is the
next position of the on-line algorithm then, when submitted T , the on-line
algorithm pays T (j), which is the cost of the last task in the sequence.

Observe that when the adversary generates only cruel tasks, the process of
selecting the next position is simplified: if the on-line algorithm is in position
i, and the current task has cost w = T (i) in position i, zero elsewhere,
then the next position is i with probability e−w/βi, j 6= i with probability
pij(1 − e−w/βi).

Let ǫ be a fixed positive real number. Assume first that the adversary
generates only cruel tasks with cost ǫ in the position currently occupied by
the adversary, zero elsewhere. Let C(ǫ) be the cost matrix obtained from
C by adding a self-loop of cost ǫ at each node. Let pij(ǫ) be the transition
probabilities for the resistive walk in this augmented graph (pij(ǫ) = pij(1−
pii(ǫ), if i 6= j). This walk has stretch 2n− 1. Consider an on-line algorithm
that performs a random walk with transition probabilities pij(ǫ), where a
transition from i to i represents a choice of staying at position i. We can
assume without loss of generality that the adversary changes position only if
it occupies the same position as the on-line algorithm. The on-line algorithm
pays a cost of cij whenever it moves from position i to position j; it pays a
(task processing) cost of ǫ = cii whenever it stays put in its current position.
The same holds true for the adversary. Thus, the situation reduces to a cat
and mouse game, and the algorithm is 2(n − 1)-competitive.

Assume next that the adversary generates cruel tasks of cost kǫ, k an
arbitrary integer. Consider the on-line algorithm derived from the previous
one, by considering a unit task of cost kǫ to consist of k tasks of cost ǫ: The
algorithm performs up to k successive trials: at each trial it moves to position

38

j with probability pij(ǫ); if j 6= i then it halts. The new algorithm does no
worse than the previous one, and is (2n − 1)-competitive.

Let w = kǫ the cost of the current task. The algorithm stays in the same
position i with probability

(pii(ǫ))
k = (pii(ǫ))

w/ǫ;

it moves to a new position j 6= i with probability

pij · (1 − (pii(ǫ))
k).

We have, by the results of Section 7

lim
ǫ→0

1 − pii(ǫ)

ǫ
=

1

βi
.

Thus

lim
ǫ→0

(pii(ǫ))
w/ǫ = lim

ǫ→0
(1 −

ǫ

βi

)w/ǫ

= e−w/βi.

The transition probabilities of the previous algorithm converge to the tran-
sition probabilities of algorithm MEMORYLESS, when ǫ → 0. It follows, by
a continuity argument, that MEMORYLESS is (2n − 1)-competitive. 2

10 Discussion and Further Work

Fiat et al.[11] give a randomized k-server algorithm than achieves a com-
petitiveness of O(log k) in a graph with the same cost on all edges, against
an oblivious adversary. Can a similar result be obtained for the k-server
problem on other graphs? One consequence of Theorem 2.1 is that no mem-
oryless k-server algorithm can achieve a competitiveness lower than k in any
graph if it moves at most one server in response to a request. This follows
from restricting the game to a k + 1-node subgraph, so that we then have a
cat-and-mouse game; since the cat is memoryless, it executes a random walk
and the lower bound of Theorem 2.1 applies.

We now list several open problems raised by our work.

39

We do not know what stretch can be achieved by random walks when the
cost matrix C is not symmetric.

It would be interesting to study the cat-and-mouse game under a wider
class of strategies, for the case when the cat is not blind; this would extend
the interesting work of Baeza-Yates et al. [1].

We have no results for the k server problem in general metric spaces. We
would like to prove that the resistive random walk yields a server algorithm
that achieves a competitiveness that is a function of k alone, in any metric
space (against an adaptive on-line adversary). This would yield [3] a deter-
ministic algorithm having finite competitiveness in an arbitrary metric space.
Fiat, Rabani and Ravid [12] have recently given a deterministic algorithm
whose competitiveness depends only on k.

We can prove that RWALK is 2k − 1-competitive in any metric space
against a lazy adaptive on-line adversary that moves only when it must:
whenever there is a node occupied by an adversary server that is not occupied
by an on-line algorithm’s server, the adversary requests such node. The lazy
adversary conjecture is that the resistive on-line algorithm achieves its worst
performance against a lazy adversary. A proof of this conjecture would show
that the resistive algorithm is 2k − 1-competitive in any metric space. The
reason is as follows: provided the (adaptive on-line) adversary plays by the
lazy adversary conjecture, the operation of the algorithm on any sequence
can be broken up into phases. At the beginning of each phase the k points
occupied by RWALK’s servers are exactly those occupied by the adversary’s.
The adversary moves a server at the first request of each phase, and makes
no other move during the round. At every instant of the phase, there are
k − 1 points at which both RWALK and the adversary have servers, and
two additional points one of which is occupied by an adversary server and
one occupied by a server of RWALK. Call these two points “RWALK’s hole”
and “the adversary’s hole” respectively (note the order). Since the adversary
does not move any servers during a phase, its hole does not move during
the phase. RWALK’s hole executes a resisitive random walk on the k + 1-
node subgraph active during the phase. The phase ends when RWALK’s hole
catches up with the (static) adversary’s hole.

The resistive random walk on a graph with n vertices has a stretch of
at most 2(n − 1) on any edge (see the analysis at end of section 3). The
total cost incurred by RWALK during the phase is exactly the cost incurred
by its hole during the phase. Suppose that the adversary moved a server a

40

distance d to begin the phase. Then the distance between the two holes at
the beginning of of the phase is d, and the expected cost incurred by the
RWALK hole during the phase is at most (2k − 1)d.

If the cost matrix fulfils the triangle inequality, then the resistive random
walk has a stretch of at most 2n− 3 on any edge, so that the lazy adversary
conjecture implies that RWALK is (2k − 1)-competitive on such graphs.

Acknowledgements

We thank Allan Borodin and Gil Strang for their helpful comments and
suggestions.

References

[1] R.A. Baeza-Yates, J.C. Culberson, and G.J.E. Rawlins. Searching in
the plane. To appear in Information and Computation, 1990.

[2] L.E. Baum and J.A. Eagon. An inequality with applications to statistical
estimation for probabilistic functions of Markov processes and to a model
for ecology. Bull. Amer. Math. Soc., 73:363–363, 1967.

[3] S. Ben-David, A. Borodin, R.M. Karp, G. Tardos, and A. Wigderson.
On the power of randomization in on-line algorithms. Algorithmica,
11(1):2–14, 1994.

[4] P. Berman, H.J. Karloff, and G. Tardos. A competitive 3-server algo-
rithm. In Proceedings 1st ACM-SIAM Symposium on Discrete Algo-
rithms, pages 280–290, 1990.

[5] A. Borodin, N. Linial, and M. Saks. An optimal online algorithm for
metrical task systems. Journal of the ACM, 39:745–763, 1992.

[6] R. Bott and R. J. Duffin. On the algebra of networks. Trans. Amer.
Math. Soc., 74:99–109, 1953.

[7] A. K. Chandra, P. Raghavan, W.L. Ruzzo, R. Smolensky, and P. Tiwari.
The electrical resistance of a graph captures its commute and cover

41

times. In Proceedings of the 21st Annual ACM Symposium on Theory
of Computing, pages 574–586, Seattle, May 1989.

[8] M. Chrobak, H.J. Karloff, T. Payne, and S. Vishwanathan. New results
on server problems. In Proceedings of the 1st ACM-SIAM Symposium
on Discrete Algorithms, pages 291–300, 1990.

[9] M. Chrobak and L.L. Larmore. An optimal online algorithm for k servers
on trees. SIAM Journal on Computing, 20:144–148, 1991.

[10] P.G. Doyle and J.L. Snell. Random Walks and Electric Networks. The
Mathematical Association of America, 1984.

[11] A. Fiat, R. M. Karp, M. Luby, L. A. McGeoch, D. D. Sleator, and
N. Young. Competitive paging algorithms. Journal of Algorithms,
12:685–699, 1991.

[12] A. Fiat, Y. Rabani, and Y. Ravid. Competitive k-server algorithms.
In Proceedings of the 31st Annual IEEE Symposium on Foundations of
Computer Science, pages 454–463, 1990.

[13] R. M. Foster. The average impedance of an electrical network. In Con-
tributions to Applied Mechanics (Reissner Anniversary Volume), pages
333–340. Edwards Bros., Ann Arbor, Mich., 1949.

[14] R. M. Foster. An extension of a network theorem. IRE Trans. Circuit
Theory, 8:75–76, 1961.

[15] E. Grove. The harmonic online k-server algorithm is competitive. In
Proceedings of the 23rd Annual ACM Symposium on Theory of Comput-
ing, pages 260–266, 1991.

[16] A. R. Karlin, M. S. Manasse, L. Rudolph, and D.D. Sleator. Competitive
snoopy caching. Algorithmica, 3(1):70–119, 1988.

[17] J.G. Kemeny, J. L. Snell, and A.W. Knapp. Denumerable Markov
Chains. The University Series in Higher Mathematics. Van Nostrand,
Princeton, NJ, 1966.

[18] M.S. Manasse, L.A. McGeoch, and D.D. Sleator. Competitive algo-
rithms for server problems. Journal of Algorithms, 11:208–230, 1990.

42

[19] A. W. Marshall and I. Olkin. Inequalities: Theory of Majorization and
Its Applications. Academic Press, New York, 1979.

[20] C.H. Papadimitriou and M. Yanakakis. Shortest paths without a map.
Theoretical Computer Science, 84:127–150, 1991.

[21] P. Raghavan and M. Snir. Memory versus randomization in on-line
algorithms. In 16th International Colloquium on Automata, Languages,
and Programming, volume 372 of Lecture Notes in Computer Science,
pages 687–703. Springer-Verlag, July 1989. Revised version available as
IBM Research Report RC15840, June 1990.

[22] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and
paging rules. Communications of the ACM, 28:202–208, February 1985.

[23] L. Weinberg. Network Analysis and Synthesis. McGraw-Hill, New York,
1962.

43

