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Abstract

Subtraction is a powerful technique for creating new bijections
from old. Let’s reinvent it! While we’re at it, let’s reinvent division
as well.

1 Matchings

Write
f : A ≡ B

and say ‘f matches A with B’ to mean that we know a suitable bijection f
from A to B, together with its inverse

f−1 : A ≡ B.

Write
A ≡ B

and say ‘A matches B’ to mean that we know (or know we could know) some
f : A ≡ B. We have

A ≡ A; A ≡ B =⇒ B ≡ A; A ≡ B ∧B ≡ C =⇒ A ≡ C.

(We refrain from saying that ≡ is an equivalence relation since it is inherently
time-dependent.)

∗The author(s) hereby waive all copyright and related or neighboring rights to this
work, and dedicate it to the public domain. This applies worldwide.
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We can add and multiply matchings:

A ≡ B ∧ C ≡ D =⇒ A+ C ≡ B +D,

where + denotes disjoint union, and

A ≡ B ∧ C ≡ D =⇒ A× C ≡ B ×D.

2 Respectful subtraction

Before addressing subtraction in general, let’s begin with respectful subtrac-
tion, an important special case. It’s so simple that it hardly deserves to be
called subtraction.

Definition. For f : A + C ≡ B + D, g : C ≡ D, write g � f and say ‘g
respects f ’ if

∀x ∈ C (f(x) ∈ D =⇒ g(x) = f(x)).

Proposition 1 (Respectful subtraction). If

f : A+ C ≡ B +D; g : C ≡ D; g � f

then
f \ g : A ≡ B,

where
f \ g(x) = f(x) if f(x) ∈ B else f(g−1(f(x))).

Moreover,
f \ g � f

and
f \ (f \ g) = g.

Proof: Without loss of generality, assume f is the identity on A+B = C+D.
g fixes C ∩D and matches C \D to D \C. f \ g fixes A∩B and, taking its
cue from g−1, matches A \B = D \ C to B \ A = C \D. ♠
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3 Subtraction

Proposition 2 (Subtraction). If

f : A+ C ≡ B +D; g : C ≡ D

with D finite, then
f \ g : A ≡ B,

where

f \ g(x) = (y := f(x); while y ∈ D do y := f(g−1(y)); return y).

Proof: This goes way back—see [1]. ♠

When g � f we’re back to respectful subtraction:

Proposition 3. If g � f then

f \ g(x) = f(x) if f(x) ∈ B else f(g−1(f(x))). ♠

The fact that f \ g � f is general:

Proposition 4. f \ g � f . ♠

Idempotence of subtraction characterizes respectfulness:

Proposition 5.
f \ (f \ g) = g ⇐⇒ g � f. ♠

This gives us a closure operation:

Proposition 6.
f \ (f \ (f \ g)) = f \ g,

so
f \ (f \ (f \ (f \ g))) = f \ (f \ g). ♠
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4 Inclusion-exclusion

Subtraction generalizes to inclusion-exclusion. Let P be a poset with {q :
q ≤ p} finite for all p. Given a family of finite sets Ap, p ∈ P , let

A≤p =
∑
q≤p

Aq,

etc.

Proposition 7 (Inclusion-exclusion).

∀p A≤p ≡ B≤p =⇒ ∀p Ap ≡ Bp.

Proof: By induction: Assuming

∀q < p Aq ≡ Bq

(true if p is minimal) we have

A<p ≡ B<p.

Subtract from
A≤p ≡ B≤p

to get
Ap ≡ Bp. ♠

To be more explicit, define the projection map

πA :
∑
p

Ap → P, π(x) = p ⇐⇒ x ∈ Ap.

Proposition 8. If
gp : A≤p ≡ B≤p

then
fp : Ap ≡ Bp

where
fp(x) = F (p, x),

F (p, x) = (y := gp(x); q := πB(y); return y if q = p else F (p, F̄ (q, y)));

F̄ (p, x) = (y := g−1
p (x); q := πA(y); return y if q = p else F̄ (p, F (q, y))).

Proof: This is what you get if you trace it through. ♠
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5 Extreme division

Subtraction will get you a long way toward automating the process of gen-
erating bijections. But sometimes you will want to divide, and that’s when
things can get scary. (Like the old Marchant mechanical calculators, which
would make a satisfying ‘chunk’ when you hit + or −, but would make a
terrifying racket, with the carriage scurrying to and fro, when you hit the
Auto

÷ key.)
The way to keep things under control is to make sure you are multiplying

polynomials (in one or many variables), with the polynomial you are dividing
by having a unique extreme monomial ω for some linear function on the
space of degrees (in other words a singleton monomial on the boundary of
its Newton polytope). In this case you can use ‘extreme division’, whereby
you recursively subtract the mapping based on multiplication by ω.

Suppose
F : A× C ≡ B × C

and
G : B × C ≡ A× C .

(We may choose G = F−1, but we don’t require this.) For ω ∈ C, define

xdiv((F,G), ω) = (f, g)

where f, g are the partial functions f on A and g on B defined via the mutual
recursion equations

f(x) = ((y, z) := F ((x, ω)); while z 6= ω do ((y, z) := F ((g(y), z)); return y)

g(x) = ((y, z) := G((x, ω)); while z 6= ω do ((y, z) := G((f(y), z)); return y)

If both f and g are total, we say that the pair (F,G) is X-divisible for ω,
and that ω is an extreme point for the pair (F,G). This terminology springs
from the following proposition.

Proposition 9 (Extreme division). If A,B,C are multinomials, and F,G
match terms of A · C and B · C, then (F,G) is X-divisible for any extreme
monomial ω of C.

Proof: By induction. ♠
Extreme division is what Conway and Doyle [2] had in mind when they

wrote, ‘There is more to division than repeated subtraction.’ This must be
a great truth, because its negation would appear to be at least as true.
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6 Mode d’emploi

Contrary to what we may appear to be claiming in Proposition 9, the bijec-
tion yielded by the xdiv algorithm may fail to be a ‘matching’, because it
may take too long to compute, or otherwise fail to qualify as ‘suitable’, the
admittedly slippery condition that we slipped in as part of the definition of
a matching. The same goes for bijections obtained by inclusion-exclusion.
This is why we have taken care to announce 7 and 9 as ‘Propositions’, yield-
ing bijections proposed for consideration as ‘matchings’. This is contrary to
mathematical custom, and wrong-headed, but useful nevertheless.

Now it will often happen that a slow quotient bijection can be speeded up
immensely by ‘memoizing’, meaning that values of f and g are automatically
saved so that they don’t get computed over and over. This in itself may make
the bijection ‘suitable’.

Better still is to be able to see ‘what the bijection is doing’, so that it
can be defined, and proven to be a suitable bijection, without reference to
its origin as a quotient.

Here’s a case in point. Everyone knows that(
n

k

)
=

(
n

n− k

)
,

and if you ask why, they will either tell you to match a k-subset to the
complementary (n− k) - subset, or compute(

n

k

)
=

n!

k!(n− k)!
=

n!

(n− k)!(n− (n− k))!
=

(
n

n− k

)
.

Taking our motto to be ‘follow the algebra’, we recast the computation
as (

n

k

)
k!(n− k)! = n! =

(
n

n− k

)
(n− k)!k! =

(
n

n− k

)
k!(n− k)!,

where every step is backed by a matching. Now divide. The xdiv algorithm
yields a very inefficient computation of a very simple matching (see the code
in the appendix):
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([[0, 1], [2, 3, 4]], [[0, 1, 2], [3, 4]])

([[0, 2], [1, 3, 4]], [[0, 1, 3], [2, 4]])

([[0, 3], [1, 2, 4]], [[0, 2, 3], [1, 4]])

([[0, 4], [1, 2, 3]], [[1, 2, 3], [0, 4]])

([[1, 2], [0, 3, 4]], [[0, 1, 4], [2, 3]])

([[1, 3], [0, 2, 4]], [[0, 2, 4], [1, 3]])

([[1, 4], [0, 2, 3]], [[1, 2, 4], [0, 3]])

([[2, 3], [0, 1, 4]], [[0, 3, 4], [1, 2]])

([[2, 4], [0, 1, 3]], [[1, 3, 4], [0, 2]])

([[3, 4], [0, 1, 2]], [[2, 3, 4], [0, 1]])

This follow-the-algebra matching differs from only slightly from taking the
complementary set. It’s arguably better. Do you agree?
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Appendix

"""

gauss 000 - use extreme division to match (n choose k) to (n choose n-k)

"""

def xdiv(FG,omega):

F,G=FG

def f(x):

y,z=F((x,omega))

while z!=omega:

y,z=F((g(y),z))

return y

def g(x):

y,z=G((x,omega))

while z!=omega:

y,z=G((f(y),z))

return y

return [f,g]

import itertools

def makeintolist(a): return [x for x in a]

def sublist(a,c): return [a[x] for x in c]

def num(n): return [x for x in range(n)]

def combinations(a,k):

return [makeintolist(a) for a in itertools.combinations(a,k)]

def complement(s,a): return [x for x in s if x not in a]

def separate(s,a): return [a,complement(s,a)]

"""

choose(n,k) lists the ways for separating n into pieces of size k and n-k

"""

def choose(n,k):

s=range(n)
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return [separate(s,a) for a in combinations(s,k)]

"""

compress(l) replaces elements of l by their relative ranks

"""

def compress(l):

m=sorted(l)

return [m.index(x) for x in l]

"""

binom(sigma,k) maps the permutation sigma to choose(n,k) * k! * (n-k)!

"""

def binom(sigma,k):

a=sigma[:k]

b=sigma[k:]

return [[sorted(a),sorted(b)],[compress(a),compress(b)]]

"""

monib is the inverse of binom

"""

def monib(abcd):

((a,b),(c,d))=abcd

return sublist(a,c)+sublist(b,d)

"""

flipkl maps choose(n,k) * k! * (n-k)! to choose(n,k) * (n-k)! * k!

We need this because we decided to cast division in terms of matchings

between A*C and B*C rather than A*C and B*D

"""

def flipkl(abcd):

((a,b),(c,d))=abcd

return [[a,b],[d,c]]
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"""

Our F and G would be the same, except for the flipping.

"""

def F(abcd):

((a,b),(c,d))=abcd

k=len(a)

l=len(b)

return flipkl(binom(monib(abcd),l))

def G(abcd):

((a,b),(c,d))=abcd

k=len(a)

l=len(b)

return binom(monib(flipkl(abcd)),l)

def omega(n,k): return [num(k),num(n-k)]

def match(n,k): return xdiv([F,G],omega(n,k))

"""

TESTING

"""

def column(l):

print(*l,sep=’\n’)

n=5

k=2

A=choose(n,k)

(f,g)=match(n,k)

B=[f(ab) for ab in A]

column(zip(A,B))

C=[g(ab) for ab in B]

print(A==C)
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