Solving equations through the ages

Various authors

Version 1.0, 6 October 1998

Solving the quadratic, circa 2000 BC

Solving the cubic, circa 1500 AD

Regvia.
Deducito tertiam partem numeri rerum ad cubum, cuii addes quadratum dimidï̈ numeri xequationis, \& totius accipe radicem, fáli cet quadratam, quam feminabis, uníqs dimidium numeri quod iam in feduxeras, adijcies, ab altera dimidium idem minues, habebis'́p Bi nomium cum fua Apotome, inde detracła pr cubica Apotomx ex pz cubica fui Binomï, refiduũ quod ex hoc relinquitur, eft rei eftimatio. Exemplum.cubus $\& 6$ poficiones, xquan tur 20,ducito 2 , tertiam partem 6 , 2 d cus bum, fit 8 , duc 10 dimidium numeri in $f f_{\text {, }}$ fit 100 , iunge 100 \& 8, fit 108 , accipe radis cem quacelt Re 108,8 eam geminabis, alte ríaddes 10 ,dimidium numeri, $a b$ altero mi nues tantundem, habebis Binomiü \&: 108 $\mathrm{p}: 10, \&$ Apotomen py $108 \mathrm{~m}: 10$, horum accipe Re" $^{\text {en }}$ cub 24 \& minue illam que eft Apo

F2. $108 \mathrm{p}: 10$
R1 $108 \mathrm{~m}: 10$
RZ V: Cu.FY $108 \mathrm{p}: 10$ m: F\& V:CU. R\& $108 \mathrm{~m}: 10$ tomæ, ab ea qux eft Binomï, habebis rei xftimationem, piv: cub: Rz $108 \mathrm{p}: 10 \mathrm{~m}:$ Ry v: cubicard $108 \mathrm{~m}: 10$.

Solving the quartic, circa 1500 AD

Demonstratio.
Sit quadratum A f,disifum in duo quadrata $A D \& D P, \&$ duo
 ut remaneat quadratum totum a h , dico quod talis gnomo, conita= bit ex duplo $\mathrm{G} C$ addite linex, in $\mathrm{C} A$, cum quadrato $\mathrm{G} C$, nam F G cone flat ex C in C , ex diffinitione data in initio fecundi elementorum, et
 torum, X Feft xqualis FG , igitur dux fuperficies G F \& FK, conitant ex $G C$, in duplum $C A, S$ quadratū G ceft FH ex corrolario quarte fe cundi elementorū, igitur patet pro
 \& C Dac D.E, $;$ quadrata, \& D P ,
 ceffario,cum igitur uoluerimus ad dere $\bar{q} d r a t a$ aliqua, $\operatorname{add} \subset \& D E$, \& fuerint $\mathrm{CL} \& \mathrm{x} \mathrm{m}_{3}$ erit ad côplen
 dum quadratum totum neceffaria fuperficies $\mathbf{L N} \mathbf{N}$, qux ut demons fracum eff,conftat ex quadrato G c numeri quadratorum dimidiati,
nam C Left fuperficies ex \subset Cin A a, utoftenfumeft, \& A в eft 1 g̈dra tum, quia ponimus, $A D 1$ व̈diğdraum, $F L$ uero $\& N N$, fiunt ex GC in $C B$, ex 42° primi elementorum, quare fuperficies $L N A, Q$ eft nume rus addendus,fitex $\&$ c in duplum c bjd eft in numerum quadrato rum, qui fuit $\sigma_{2} \& \in \operatorname{c}$ in Ceip fam, id eftnumero quadratorum addito, \& haxc demonitratio noftrace.
 dendo tantum urriç parri,ut i qdiqdiacum cu quadrato $\&$ numero, habeant radicem,hoc facile eft, cum pofueris dimidium numeri qua dratorum, radicem numeri, item facies, ut denominationes extremx fint plus, in ambabus requationibus,nam fecus, trinomium feu Binomium redactum ad trinomium, neceffario careret radice.

Quibus iam peractis,addes tantum de quadratis, \& numero uni parti, per tertiam regulam, ut idem additum alceri pari, in qua crunt res faciat trinomium habens 8 quadratam per pofitionem, $\&_{\text {q }}$ habee bis numerum quadratorum, \& numeri addendiutriç parti, quo has bito,ab utroqs extrabes pe quadratam,quax crit in una, 1 quadratum p:numero, uel m:numero, ex alia, 1 pofitio uel plures p: numero, uel m:numero, uel numerus m:pofitionibus, quare per quintum capitur lum huius, habens propofium.

Solving the quintic, circa 2000 AD

Solving the sextic, circa 2000 AD

