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Abstract

Let σ be a simplicial triangulation of the 2-sphere, X the associated

integral 2-cycle. A filling of X is an integral 3-chain Y with ∂Y = X; a

taut filling is one with minimal L1-norm. We show that any taut filling

arises from an extension of σ to a shellable simplicial triangulation of

the 3-ball. The key to the proof is the general fact that any taut

filling of an n-cycle splits under disjoint union, connected sum, and

more generally what we call almost disjoint union, where summands

are supported on sets that overlap in at most n+ 1 vertices. Despite

the generality of this result, we have nothing to say about optimal

fillings of spheres of dimension 3 or higher.

1 Overview

Let ∆ be the abstract |V |−1-simplex with vertices V , viewed as a simplicial
complex. Let Cn and Zn be its integral n-chains and n-cycles. Here and
throughout we’ll take n ≥ 1. A filling of an n-cycle X ∈ Zn is any n + 1-
chain Y ∈ Cn+1 with ∂Y = X . Let Zvol(X) be the minimum L1-norm of a
filling of X , and call Y taut if |Y | = Zvol(∂Y ).

For X ∈ Cn let vertices(X) be the set of all the vertices of all the n-
simplices to which X assigns non-0 weight. For a taut filling Y of X we
have vertices(Y ) = vertices(X), because projecting V onto vertices(X) by
mapping V \vertices(X) to an arbitrary x ∈ vertices(X) will push any filling
with an internal vertex to a smaller filling. (Cf. Proposition 4 below.) This
is why we write Cn and Zn without reference to V .

Call an n-cycle X = X1 +X2 ∈ Zn an almost disjoint union if

|vertices(X1) ∩ vertices(X2)| ≤ n+ 1.
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This notion generalizes both disjoint union and connected sum along an
n-simplex. Ellison [2] showed the Zvol adds under almost disjoint union:
Zvol(X) = Zvol(X1) + Zvol(X2). This means that some taut filling Y of X
splits into a sum Y = Y1 + Y2 of taut fillings of X1, X2. Here we amplify
Ellison’s Corollary 2 to show (Theorem 1) that when n ≥ 2, any taut filling
of X splits.

In place of integral chains we can use chains with coefficients in Q or R.
Evidently Rvol = Qvol. Computing Rvol is a linear programming problem
with rational coefficients, so Qvol = Rvol. Ellison used LP duality to prove
that Qvol adds under almost disjoint union. Now for n ≥ 2 we get the
stronger result (Corollary 1) that taut Q-fillings split: Multiplying a taut
Q-filling Y of X by a common denominator q yields a taut Z-filling qY of
qX : Split the Z-filling qY and divide by q to get a splitting of the Q-filling
Y .

Now let σ be a simplicial triangulation of S2; let X(σ) ∈ Z2 be either
one of the 2-cycles that arises from σ by orienting its 2-simplices; and write
Zvol(σ) = Zvol(X(σ)). Let tetvol(σ) be the minimum number of 3-simplices
required to extend σ to a simplicial triangulation τ of B3. We will show that

Zvol(σ) = tetvol(σ).

Certainly Zvol ≤ tetvol, because any extension τ induces a filling of X(σ).
Theorem 2 states that any taut filling of X(σ) arises in this way.

The proof of Theorem 2 relies on Theorem 1. We use induction, with
base case σ a tetrahedron. In any taut filling Y of X(σ), thought of as a
multiset of oriented 3-simplices, some t ∈ Y meets σ in at least two faces.
Ignoring the base case, Y − t is a taut filling of X(σ) − ∂t = X(σ′), where
σ′ is either a simplicial triangulation of S2, or two such triangulations σ1, σ2

fused along an edge. In the first case induction yields a triangulation of B3,
and we glue on t. In the second case by Theorem 1 Y − t splits into taut
fillings of X(σ1), X(σ2); by induction both give triangulations of B3, which
we glue onto t. So we wind up with some kind of triangulation τ of B3, built
from the simplices of Y . The wrinkle is that we need to ensure that in Y
there are no identifications beyond those in τ .

We don’t know what happens for spheres of dimension 3 or greater.
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2 Background

Our interest in Zvol stems from the work of Sleator, Tarjan, and Thurston
[5]. They observed that coning from a vertex of maximal degree shows that
a v-vertex triangulation σ of S2 has tetvol ≤ 2v − 10. They then produced
examples for which tetvol = 2v − 10, provided v is larger than some un-
specified bound, and conjectured that such examples should exist for any
v ≥ 13. Their approach was to realize σ as an ideal hyperbolic polyhe-
dron with volume 2v − O(log(v)) when measured in bushels, a bushel being
volume of an equilateral ideal tetrahedron, which is maximal. This implies
tetvol ≥ 2v − O(log(v)). From there they worked their way up to showing
that tetvol = 2v−10. They suggested [5, p. 697] that in fact Qvol = 2v−10,
which would immediately imply tetvol = 2v − 10. Mathieu and Thurston
[3] produced a different class of examples with Qvol = 2v − 10, still under
the assumption that v is sufficiently large. In [1] we produced examples for
any v ≥ 13 with Qvol = 2v − 10, confirming the conjecture of Sleator, Tar-
jan, and Thurston. Theorem 2 here now tells us that whenever we have
Qvol = 2v − 10, any taut filling must arise from a triangulation of the ball.

About Qvol versus Zvol. In [1] we describe triangulations of S2 with
Qvol < Zvol. Since Qvol and Zvol add under connected sum, the gap between
them can be arbitrarily large (Ellison [2]). Some examples with a gap have
maxdeg = 6, but in all such examples that we have seen, the gap is < 1,
so that ⌈Qvol⌉ = Zvol. Taking connected sums of these examples produces
vertices of degree ≥ 7.

3 Taut fillings

As long as n > 0, as we will continue to assume throughout, we can think of
an n-chain X ∈ Cn as a multiset of non-cancelling oriented simplices:

X =
∑

t∈X

t.

In this sum t denotes an oriented simplex

t = [x0, . . . , xn] = [xπ(0), . . . , xπ(n)], π an even permutation,

and each unoriented simplex contributes a number of terms corresponding to
its multiplicity.
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The size of X as a multiset is its L1-norm |X|. Write U ⊂ X if U is a
sub-multiset of X . This happens just when |X| = |U |+ |X − U |.

Proposition 1. If Y is taut and U ⊂ Y then U is taut.

Proof. This is clear, but let’s drag it out. If U is not taut, there is a smaller
filling V of ∂U . Take Y ′ = Y −U +V . In terms of multisets, this means that
we substitute V for U , and then do any required cancellation of oppositely
oriented simplices of Y − U and V . We have

∂Y ′ = ∂Y − ∂U + ∂V = ∂Y

and
|Y ′| ≤ |Y − U |+ |V | = |Y | − |U |+ |V | < |Y |,

contradiction.

4 Coning

For x ∈ V , U ∈ Cn let

nbhd(x, U) =
∑

t∈U :x∈vertices(t)

t,

deg(x, U) = |nbhd(x, U)|,

maxdeg(U) = max
x

deg(x, U).

The cone from x to U is the (n + 1)-chain

cone(x, U) =
∑

t∈U

adj(x, t),

consisting of all the non-trivial oriented (n+1)-simplices adj(x, t) = [xx0 . . . xn]
obtained by adjoining x to t = [x0 . . . xn] ∈ U . If x ∈ vertices(t) then t
doesn’t contribute to the sum, so |cone(x, U)| = |U | − deg(x, U).

If X is closed then ∂ cone(x,X) = X , so

Proposition 2.

Zvol(X) ≤ |X| −maxdeg(X)
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If U ∈ Zn and x /∈ vertices(U) then deg(x, U) = 0 and |cone(x, U)| = |U |.
In this case we call cone(x, U) a complete cone. By Proposition 2 a non-trivial
complete cone is not taut. (This is a long-winded way of saying that instead
of coning from x /∈ U , we could have coned from some x ∈ U .) Thus:

Proposition 3. If Y is taut it contains no non-trivial complete cone.

Call x ∈ vertices(Y ) \ vertices(∂Y ) an internal vertex of Y ∈ Cn+1. If x
is internal to Y then nbhd(x, Y ) is a complete cone, so as observed above:

Proposition 4. If Y is taut then it has no internal vertices.

5 Almost disjoint unions

Recall that if X, Y ∈ Zn we call X + Y an almost disjoint union if

|vertices(X) ∩ vertices(Y )| ≤ n+ 1.

The most interesting special case is a connected sum, where t = [c0, c1, . . . , cn]
occurs once in X and −t = [c1, c0, . . . , cn] occurs once in Y . For example, if
n = 1 with X a cycle of length p and Y a cycle of length q the connected
sum X+Y is a cycle of length p+q−2. Zvol adds, because Zvol(X) = p−2,
Zvol(Y ) = q − 2, and

Zvol(X + Y ) = (p+ q − 2)− 2 = Zvol(X) + Zvol(Y ).

In this case not every filling of X + Y splits. We want to show that fillings
do split when n ≥ 2.

For A ⊂ V , p ∈ A define

πA,p : V → A

πA,p(x) = x if x ∈ A else p

and let
K∗(A, p) : C∗(V ) → C∗(A)

be the induced chain map. This is a projection of C∗(V ) onto C∗(A).
Let A,B be finite vertex sets sharing the vertices C = A∩B. For practice

with this overloading of the letter ‘C’, observe that C|C|(C) is trivial, as is
Z|C|+1(C).
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Let
C∗(A,B) = C∗(A)⊕ C∗(B).

For p, q ∈ C define

g∗(p, q) = K∗(A, p)⊕K∗(B, q) : C∗(A ∪ B) → C∗(A,B).

Proposition 5. Let (X, Y ) ∈ Cn(A,B). If |C| ≤ n we can recover (X, Y )
from X + Y . If (X, Y ) ∈ Zn(A,B) this holds also when |C| = n+ 1.

Proof. We can assume |C| ≥ 1. (Add a brand new point to C if necessary.)
We claim that for any p, q ∈ C (not necessarily distinct) we have

gn(p, q)(X + Y ) = (X, Y ).

Indeed,
Kn(A, p)(X + Y ) = X +Kn(A, p)(Y ).

The second term belongs to Cn(C), which is trivial when |C| ≤ n. If Y ∈
Zn(B) the second term belongs to Zn(C), which is trivial when |C| ≤ n+ 1.

Theorem 1. If |C| ≤ n+ 1, for all (X, Y ) ∈ Zn(A,B) we have

Zvol(X + Y ) = Zvol(X) + Zvol(Y ).

And as long as n ≥ 2, for any Z ∈ taut(X + Y ) we have Z = ZX + ZY with

ZX ∈ taut(X), ZY ∈ taut(Y ).

Note. This result resembles Theorem 6.2 of Pournin and Wang [4] about flip
paths. Like theirs, our proof uses a variation on the normalization technique
of STT [5, Lemma 7]. It would be nice to fit these results under one roof.

Proof. We can assume |C| = n + 1, as this is the hardest case. And we
might as well go ahead and take n = 2, |C| = 3, as this case illustrates all
the issues.

Take any Z ∈ taut(X + Y ) ⊂ C3(A ∪ B). Pick distinct points p, q ∈ C,
and let

(ZX , ZY ) = gn+1(p, q)(Z).

(For now we’ll suppress the dependence of ZX , ZY on p, q.)
Because g∗(p, q) is a chain map we have ∂n+1ZX = X , ∂n+1ZY = Y :

(∂n+1ZX , ∂n+1ZY ) = ∂n+1(gn+1(p, q)(Z)) = gn(p, q)(∂n+1Z) = gn(p, q)(X+Y ) = (X, Y ).
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We want to show that

|Z| ≥ |ZX|+ |ZY |

because then we’ll be done:

Zvol(X + Y ) = |Z| ≥ |ZX|+ |ZY | ≥ Zvol(X) + Zvol(Y )

To prove that |Z| ≥ |ZX |+|ZY |, we’ll show that under the map gn+1(p, q),
any t ∈ Z dies either in ZX or in ZY .

We’ll call any 2-simplex t ∈ Z a ‘tet’, short for ‘tetrahedron’.
Say that a tet t ∈ Z has type CCXY if t = ±[c1c2x1y1] for c1, c2 ∈ C,

x1 ∈ A \ C, y1 ∈ B \ C. Similarly for types XXXX , CXXX , CXXY ,
XXXY , etc. The first two are pure X cases, meaning that they live in
C3(A); the last two are hybrid cases.

Any XX.. tet dies in ZY ; any Y Y.. tet dies in ZX .
The remaining cases to check are the hybrid case CCXY and the pure

cases CCCX , CCCY . The more interesting case is CCXY : The key is that
since |C| = 3, {c1, c2} cannot be disjoint from {p, q}. As for CCCX , these
must die in ZY because q ∈ {c1, c2, c3} = C. Ditto for CCCY .

So
|Z| = |ZX(p, q)|+ |ZY (p, q)|,

and Zvol adds.
Note how we’re now emphasizing the possible dependence of ZX , ZY on

p, q. When n = 1 the choice of p, q can indeed make a difference: We can get
a different pair (ZX , ZY ) if we switch p and q. (Think about the connected
sum of two cycle graphs.)

But when n ≥ 2 we will now show that all tets are pure X or pure Y ,
so ZX consists of all the pure X tets, and ditto for ZY . This will make
Z = ZX + ZY with ZX ∈ taut(X), ZY ∈ taut(Y ).

Again our test case is n = 2.
The key observation is that, now that we know that every tet dies on one

side or the other, we know that no tet can die on both sides, because that
would make |Z| > Zvol(X) + Zvol(Y ).

An XXY Y tet would die on both sides, so there can be none of these.
Any pqXY , pXXY , or qXY Y would die on both sides, and p, q are

arbitrary, so this rules out all CCXY,CXXY,CXY Y .
The only remaining hybrids are XXXY and XY Y Y . Let’s rule out

XXXY , leaving XY Y Y to symmetry.
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Fix any y0 ∈ B \ C, and suppose there is some XXXy0 tet in Z. Let
U ⊂ Z consist of all such XXXy0 tets. We claim that y0 /∈ vertices(∂U).
For let s be any 2-simplex of the form XXy0, the only kind of 2-simplex
containing y0 that could belong to ∂U . Any t ∈ Z of which s or −s is a face
must be a hybrid tet, and the only possibility is XXXy0, so t ∈ U . Because
∂Z = 0 the signed multiplicity of s vanishes in ∂Z, hence also in ∂U . So
y0 /∈ vertices(∂U), making U a complete cone on y0, contradiction. So there
is no such XXXy0 tet, ruling out XXXY , and with it XY Y Y .

So there are no hybrid tets, meaning that Z splits, as claimed.
That takes care of n = 2. Let’s quickly look at n = 3. As CCXY was

the crux for n = 2, CCCXY is the crux for n = 3. pqCXY dies on both
sides, and p, q are arbitrary, so CCCXY dies.

Finally, let’s consider what goes wrong when n = 1. Here the only hybrid
type is CXY , and neither pXY nor qXY dies on both sides. so we can’t rule
this type out. Failing that, the XXy0 tets needn’t form a complete cone,
because [x0x1y0) can continue across [x1y0] to −[px1y0], so we can’t rule out
XXY either.

The foregoing proof works equally well over Q, providing we permit our-
selves to work with fractional multisets. Alternatively, we can clear denomi-
nators as in the introduction above. Either way, we have:

Corollary 1. Qvol adds under almost disjoint union, and for n ≥ 2 taut

Q-fillings split.

6 Triangulations

We turn now to filling simplicial triangulations of S2. Let’s begin by estab-
lishing terminology.

An n-simplex s is simply a set of size n + 1. Its faces are its subsets,
which are k-simplices with −1 ≤ k ≤ n, −1 being the dimension of the
empty simplex. A simplicial complex σ is a finite collection of simplices
closed under taking faces: If t ⊂ s ∈ σ then t ∈ σ.

For any k-simplex s ∈ σ define the link

link(s, σ) = {t : t ∩ s = ∅, s ∪ t ∈ σ}.

This is a simplicial complex, but (except for link(∅, σ) = σ) it is not a
subcomplex of σ, because we are taking simplices in σ and knocking down
their dimension by k + 1.

8



We are interested in particularly nice simplicial complexes called normal
pseudomanifolds, or as we will prefer to say, clean n-complexes.

1. To start with, a clean complex must be pure, meaning that every sim-
plex of σ belongs to some n-simplex in σ. To determine σ we can
specify its n-simplices, and then throw in all their subsets. So we can
confound a pure complex with the set of its n-simplices.

2. A clean complex is a pseudomanifold : Every n-simplex abuts at most
one other n-simplex across any given n − 1-simplex. Another way to
say this is that the link link(s, σ) of any n − 1-simplex s consists of
either a single point (in which case s ∈ ∂σ is a boundary simplex ), or
two points (s ∈ σ \ ∂σ is an interior simplex.)

3. A clean complex is normal : For any simplex s of dimension 0, . . . , n−2,
link(s, σ) is connected. (Some definitions extend this requirement to the
empty simplex of dimension −1; this forces σ to be connected.) Being
normal means that σ is just what you get by gluing its n-simplices
along shared faces, without extra identifications. This rules out, for
example, an icosahedron with a pair of opposite vertices identified.

If σ is clean, link(s, σ) is clean. The boundary ∂σ of σ is clean, and closed:
∂∂σ = {∅}.

If M is an n-manifold, say that a simplicial complex σ is a simplicial

triangulation of M if the geometric carrier of σ is homeomorphic to S2. In
this case σ is necessarily a clean complex. Secretly we imagine that we’ve
prescribed a specific homeomorphism, at least up to the point of picking out
one particular orientation X(σ) ∈ Cn if M is oriented, but we don’t insist
upon this because nothing will depend on which orientation we pick.

This notion of triangulation is not as general as you might want for some
purposes. The double cover of a triangle is not a simplicial triangulation
of S2, because that would requires two distinct 2-simplices to have the same
three edges. Nor can any 2-simplex have two of its edges glued to one another.
Thurston [6] allows such triangulations, but it is unclear how important these
are to his theory of shapes of surfaces. We don’t allow them.

We continue to think of a chain Y ∈ Cn as a multiset of oriented n-
simplices. If this is only nominally a multiset (all multiplicites are 1) we’ll
call Y simplicial, and view it as a pure simplicial complex. (To stickle, in
doing this we are viewing oriented simplices as a subclass of simplices, and
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confounding a set of n-simplices with a pure n-complex.) We’ll call Y clean

if it is simplicial and the associated simplicial complex is clean.

7 Filling a triangulation of the 2-sphere

Theorem 2. Let σ be a simplicial triangulation of S2, and Y a taut filling

of σ. Then Y is clean, and arises from a simplicial triangulation of B3.

Proof.

Let v, e, f count the vertices, edges, and faces of σ. We have e = 3v − 6,
f = 2v − 4. (Check: 3f = 2e, v − e+ f = 2.)

Consider a counter-example pair (σ, Y ) for which Zvol(σ) = |Y | is mini-
mal. Obviously v > 4. We can assume that σ is prime (not a connected sum
along a triangle), and in particular (this is all we will need) that there is no
vertex of degree 3.

Call a tet t ∈ Y eligible if it shares two faces with σ. (It can’t share more,
since σ has no vertex of degree 3.) Since

|Y | = Zvol(σ) ≤ f −maxdeg(σ)

there must be at least maxdeg(σ) disjointly eligible tets, but we’ll only need
two: One with faces s1, s2 ∈ σ, the other with disjoint faces s3, s4 ∈ σ. The
s3, s4 tet can’t also have s1 or s2 as a face, as then there would be a degree-3
vertex in σ. So for any face s of σ there is an eligible tet without s as a face.

Now as indicated in the introduction above, when we remove an eligible
tet t, we get a taut filling Y − t of σ′, where σ′ is either (1) a triangulation
of S2, or (2) the almost disjoint union of two triangulations σ1, σ2 of S

2 that
are joined along an edge of t. We claim Y − t is simplicial: In the case (1)
Y − t is actually clean, by minimality of |Y |. In case (2) Y − t is a taut
filling of an almost disjoint union, and as such splits Y − t = Y1 + Y2 where
Yi is a clean taut filling of σi. In this case Y − t isn’t clean, because the link
of the common edge shared by σ1 and σ2 is disconnected, but Y − t is still
simplicial.

The crux here is to show that Y is clean. For starters, Y is simplicial.
The only way Y could fail to be simplicial is if t has multiplicity 2. But then
Y − t′ wouldn’t be simplicial for eligible t′ distinct from t, contradiction.

Now, then:
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1. Y is a pseudomanifold. For suppose some 2-simplex s occurs more than
twice as the boundary of a 3-simplex of Y . If s /∈ σ, it must occur at
least twice plus and twice minus; after removing any eligible tet it still
occurs either twice plus or twice minus in Y − t in case (1), or in one
or the other of Y1, Y2 in case (2), contradicting minimality. If s ∈ σ, it
occurs at least twice plus in Y : Remove some eligible tet that does not
have s as a face to get a contradiction.

2. Y has no edge {a, b} whose link is disconnected. For the link is a 1-
dimensional complex whose edges correspond to tets of Y that contain
{a, b}. The only way a component of the link can have fewer than
three vertices is if consists of a single edge {c, d}, corresponding to a
tet t = {a, b, c, d} ∈ Y . In this case {a, b} must be an edge of σ, and
{a, b, c}, {a, b, d} the faces of σ that are adjacent along {a, b}. These
are the only faces of σ that contain {a, b}, so no other component of the
link can reduce to a single edge. If the link is disconnected, removing
any eligible tet other than t will leave it disconnected, contradicting
minimality.

3. Y has no vertex whose link is disconnected: For if link({a}, Y ) is not
connected, the only way removing a single tet t can render the link
connected is if one component of the link has a single 2-simplex {b, c, d}
and t = {a, b, c, d}. In this case {a, b, c}, {a, b, d}, {a, c, d} must all be
faces of σ, making a a vertex of σ of degree 3, contradiction.

4. Hence Y is clean.

8 Shelling

A shelling of a simplicial triangulation τ of B3 is an ordering (t1, . . . , t|τ |) of
its tets such that gluing on one at a time maintains a triangulation of B3,
i.e., so that for k = 1, . . . , |τ | the subcomplex τk generated by {t1, . . . , tk} is
a simplicial triangulation of B3. Each new tet will be glued on along one face
(v increases by 1); two faces (v stays the same); or three faces (v decreases
by 1). Call the shelling monotone if you never glue along three faces, so that
v never decreases. Call τ freely monotone shellable if any t ∈ τ can serve as
the initial tet of a monotone shellinb.
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Theorem 3. If σ is a simplicial triangulation of S2, any taut filling Y of

X(σ) is a freely monotone shellable simplicial triangulation of B3.

Proof. This is a corollary of the proof of Theorem 2 that insists on being
called a separate theorem.
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