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Prin
iples of the Motion of FluidsPart One1. Fluid bodies di�er from solids prin
ipally in that in general their parti
lesare not bound to ea
h other, so these di�erent parti
les 
an be subje
t tovery di�erent motions. A motion whi
h is imparted to one �uid parti
le isnot so determined by the motion of other parti
les that it 
ould not pro
eedin its own way. For solid bodies it is quite a di�erent situation; if they werein�exible, their �gures would undergo no 
hange, and the individual partswould keep at a 
onstant distan
e from ea
h other; so that the motion of allparts would be known, on
e that of two or three points were given. Eventhen, the motions of these two or three points are not 
ompletely arbitrary,sin
e they must keep the same distan
e from ea
h other.2. If the solid bodies were �exible, however, the motion of individual par-ti
les is less �xed; be
ause of �exure, the distan
e or the relative lo
ation1



of diverse parti
les is subje
t to 
hange. Even then, the manner of bendingobeys a 
ertain rule, whi
h diverse parti
les of bodies of this type must followin their motion, to wit that the parts that are subje
t to the bending willnot tear apart, or pier
e ea
h other; whi
h indeed will be ruled out for allsu
h bodies by a 
ommon 
hara
ter of impenetrability.3. [Fluids have an in�nitely large number of 
on
eivable �ows.℄ In �uid bodies,however, whose parti
les are not joined to ea
h other by any bond, the motionof diverse parti
les are mu
h less restri
ted, and from the motion of a numberof parti
les the motion of the others 
annot be determined. For if the motionof even a hundred parti
les were known, it is 
lear that the motion whi
hthe remaining parti
les 
ould take is in�nitely variable. From this it 
anbe 
on
luded that the motion of ea
h parti
le of the �uid 
learly does notdepend on the the motion of others, unless it were bound with them in su
ha way that it must follow with them.4. At the same time, it 
annot be that the motion of all the parti
les of the�uid is bound in no way by any law; nor 
an any 
on
eivable motion of asingle parti
le be allowed. For sin
e the parti
les are impenetrable, it is 
learthat no motion 
an take pla
e where some parti
les go through others, orthat they penetrate ea
h other. An in�nite number of su
h motions shouldbe ex
luded, and only the remaining are to be 
onsidered, and 
learly thetask is to determine by whi
h property these remaining possibilities 
an be2



distinguished from the others.5. [Cir
ums
ribe the types of kinemati
 �ows to be 
onsidered, from whi
h one 
an bepi
ked out by dynami
s.℄ Before we 
an �x on the appropriate motion when a�uid is a
ted on by a for
e, we must delimit those motions whi
h 
ould takepla
e in this �uid. I shall 
all them possible motions, to distinguish themfrom those impossible motions whi
h 
ould not take pla
e. To this end wemust de
ide the 
hara
ter appropriate to the possible motions, separatingthem from the impossible ones; when this is done we need to determine inany situation whi
h one of the possible motions a
tually should be 
hosen.At that point we must look at the for
es to whi
h the �uid is subje
ted,and then the motion 
ompatible with these for
es 
an be determined by theprin
iples of me
hani
s.6. [Restri
tion to in
ompressible �uids.℄ I have de
ided therefore to look at the
hara
ter of motions that are possible for a �uid that 
annot be penetrated. Ishall posit moreover that the �uid 
annot be 
ompressed into a smaller spa
e,and its 
ontinuity 
annot be interrupted. I stipulate without quali�
ationthat, in the 
ourse of the motion within the �uid, no empty spa
e is leftby the �uid, but it always maintains 
ontinuity in this motion. After wehave theory suitable for �uids of this nature, it will not be di�
ult to extendit further to �uids whose density is variable, and whi
h do not ne
essarilyrequire 
ontinuity. 3



7. If we 
onsider any portion of a �uid of this type, the motion by whi
hits individual parti
les are moved should be so 
onstru
ted that at ea
h timethey �ll the same amount of spa
e. If this happens for individual parti
les,the portion as a whole is prevented from expanding into a greater amountof spa
e, or being 
ompressed into a smaller spa
e; and it is just motion ofthis type, in whi
h the �uid is 
onsidered in
apable of either expansion or
ompression, that we shall take as possible motions. What we have said hereabout an arbitrary portion of �uid, is to be understood as applying to ea
helement of the �uid, so that the volume of ea
h element of the �uid ought toremain un
hanged.8. With this 
ondition satis�ed, we are to 
onsider what the motion will beat the individual points of the �uid. For an arbitrary element of the �uid,we have to �nd out the instantaneous translation of its bounding surfa
es, soas to determine the new portion of spa
e in whi
h it will be 
ontained aftera very small time period. The new portion of spa
e must be equal in size tothe old portion whi
h the element had o

upied. This equating of size willfully 
hara
terize what 
an be said about the motion. For if the individualelements o

upy equal spa
es at ea
h time, no 
ompression or expansion willarise in the �uid; so the motion will be 
ompatible with our 
ondition, andwe must allow it as a possible motion.
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9. [Resolution into two or three dire
tions.℄ When we take into a

ount not onlythe speed but also the dire
tion of the motion at ea
h point of the �uid, itbe
omes useful to resolve that motion into �xed dire
tions. This 
an be doneinto two or three dire
tions, the �rst if the motion of individual points remainplanar; otherwise the motion should be resolved along three �xed axes. Sin
ethis latter 
ase is more di�
ult than the former, it is 
onvenient to start withthe possible motions in the �rst 
ase, and when that is worked through we
an more easily solve the latter 
ase.10. [Two-dimensional �ow.℄ Therefore I shall attribute to the �uid �ow twosu
h dire
tions, so that the individual parti
les and their motions lie in theirplane.
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Let this plane be represented by the plane of Figure 11, and 
onsider anypoint l of the �uid, whose lo
ation is referred to the orthogonal 
oordinates
AL = x and Ll = y. Its motion when resolved along the same two dire
tionsdisplays a velo
ity along AL, namely lm = u, and along the other axis AB,namely ln = v: thus the a
tual speed of this point is =

√
uu + vv [= √

u2 + v2℄, and its dire
tion will be at an angle in
lined to the axis AL, whose tangentis = v/u.11. Sin
e we are proposing to develop the state of the motion that appliesto ea
h individual point, the velo
ities u and v depend only on the lo
ationof the point l, and they are to viewed as fun
tions of the 
oordinates x andy. We 
an therefore write a di�erential relation
du = Ldx + ldy,

dv = Mdx + mdy,and sin
e these are to be 
omplete di�erentials we must have2 dL/dy = dl/dxand dM/dy = dm/dx . It is to be noted in an expression like dL/dy thatthe di�erential dL of L is to be taken only from the variability of y, and ina similar way in the expression dl/dx the di�erential dl is su
h that wouldarise if only x were to vary.1The Appendix gives the 
omplete set of graphi
s.2Euler does not use the partial derivative notation ∂/∂x.
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12. [Meaning of di�erentials.℄ Care should be taken that in �fra
tions� of thetype dL/dy, dl/dx, dM/dy, dm/dx the numerators dL, dl, dM, dm notbe thought to denote 
omplete di�erentials of the fun
tions L, l, M, m; ratherthey always denote how mu
h of those di�erentials will arise from variabilityof just that 
oordinate (and that only) that appears in the denominator, sothat the expressions always represent �nite and determinate quantities. Asimilar meaning is to be understood for L = du/dx, l = du/dy, M = dv/dx,

m = dv/dy; this notation was �rst used by the illustrious Fontaine who hasfurnished us with su
h a worthy 
ompendium of 
al
ulus, and I shall adhereto it also.13. Thus, sin
e we have du = Ldx+ ldy and dv = Mdx+mdy, we may alsoinfer the two velo
ities at any other point an in�nitely small distan
e fromthe point l ; for if su
h a point is at a distan
e from l along the axis AL = dx,and along the axis AB = dy, then the velo
ity of this point along the axisAL will be = u+Ldx+ ldy; and the velo
ity along the other axis AB will be
= v +Mdx+mdy. Therefore in an in�nitely small time interval dt this pointis moved in the dire
tion of axis AL by the amount = dt(u + Ldx + ldy) andin the dire
tion of the other axis AB by the amount = dt(v + mdx + mdy).14. Having noted this, let us 
onsider a triangular element of water lmn,and we seek the lo
ation to whi
h it is transferred, by the motion intrinsi
 tothat element. Let the side lm of this triangular element be parallel to the axis8



AL, the side ln parallel to the axis AB ; and take lm = dx and ln = dy; sothat the point m has 
oordinates x+dx and y, and point n has 
oordinates xand y+dy. It is 
lear that the di�erentials dx and dy 
ould be either positiveor negative, sin
e we have not �xed them; and also that the whole mass ofthe �uid 
an be mentally divided up into elements like this, so that what wepres
ribed for one will apply equally well to all.15. To make 
lear how the element lmn is transferred in the small timeinterval dt by its intrinsi
 motion, we seek the points p, q and r, into whi
hits angles [verti
es℄ l, m and n are transferred in the time dt. Sin
e we shallhave velo
ities point: l m nalong AL u u+Ldx u+ldyalong AB v v+Mdx v+mdypoint l will 
ome to p, that is:
AP − AL = udt,

Pp − Ll = vdt.Point m will 
ome to q, that is:
AQ − AM = (u + Ldx)dt,

Qq − Mm = (v + Mdx)dt.9



But point p will be brought to r, that is:
AR − AL = (u + ldy)dt,

Rr − Ln = (v + mdy)dt.16. Sin
e points l, m and n are brought to points p, q and r in the smalltime interval dt, the triangle lmn is to be thought as going to the lo
ationindi
ated by triangle pqr, joined by the line segments pq, pr and qr. Sin
ethe triangle lmn was set to be in�nitely small, after the translation over thelittle time dt it will still retain a triangular �gure pqr, that is re
tilinear.Sin
e the element lmn ought not to be extended into a greater area, nor tobe 
ompressed into a smaller one, its motion must be so 
omposed that thearea of triangle pqr equals the area of triangle lmn.17. [Paragraphs 17-20 will establish that ▽ · u = 0, without the bene�t of the diver-gen
e theorem.℄ But the triangle lmn, if it is a right angle at l, has an area
= 1

2
dxdy, and the area of triangle pqr must also be equal to this. To �ndthat area, we must 
onsider the 
oordinates of the points p, q, r, whi
h are:p q rx AP=x+udt AQ=x+dx+(u+Ldx )dt AR=x+(u+ldy)dty Pp=y+vdt Qq=y+(v+Mdx )dt Rr=y+dy+(v+mdy)dt

10



Then the area of the triangle pqr is found from the areas of the followingtrapezoids, thus3:
△pqr = PprR + RrqQ − PpqQ.Sin
e however these trapezoids have two sides parallel and perpendi
ular tothe base AQ, their areas are easily determined.18. For we have, as in geometry,

PprR =
1

2
PR(Pp + Rr),

RrqQ =
1

2
RQ(Rr + Qq),

P pqQ =
1

2
PQ(Pp + Qq).Colle
ting these together, we �nd:

△pqr =
1

2
PQ · Rr − 1

2
RQ · Pp − 1

2
PR · Qq.[Euler de�nes new quantities Q, R, q, r.℄3See translator's 
omment to this paragraph at the end of this do
ument.
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For the sake of brevity, put
AQ = AP + Q

AR = AP + R

Qq = Pp + q

Rr = Pp + rso that
PQ = Q, PR = R, RQ = Q − R.Then △pqr = 1

2
Q(Pp+r)− 1

2
(Q−R)Pp− 1

2
R(Pp+q) or △pqr = 1

2
Qr− 1

2
Rq.19.But from the 
oordinate values shown above [paragraph 17℄

Q = dx + Ldxdt; q = 0 + Mdxdt;

R = 0 + ldydt; r = dy + mdydt.After substitution, the area of the triangle be
omes
△pqr =

1

2
dxdy(1 + Ldt)(1 + mdt) − 1

2
Mldxdydt2,or

△pqr =
1

2
dxdy(1 + Ldt + mdt + Lmdt2 − Mldt2)12



and sin
e this should be equal to the area of triangle lmn, whi
h is
= 1

2
dxdy, there results this equation:

Ldt + mdt +Lmdt2 − Mldt2 = 0,

L + m +Lmdt − Mldt = 0.20. Sin
e the terms Lmdt and Mldt are vanishingly small 
ompared to�nite L and m, we shall have the equation L + m = 0. For this reason, if weare dealing with a possible motion, the velo
ities u and v of any point l mustbe su
h that in their di�erentials
du = Ldx + ldy,

dv = Mdx + mdywe shall have L + m = 0. Sin
e L = du/dx and m = dv/dy, the velo
itiesu and v, whi
h are 
on
eived as those in point l in the dire
tions of ALand AB, should be thought of as fun
tions of the 
oordinates x and y su
hthat du/dx + dv/dy = 0, and the 
riterion of possible motions 
onsists inthe 
ondition du/dx + dv/dy = 0. Iif this 
ondition does not hold, the �uidmotion 
annot take pla
e.21. [Three-dimensional �ows.℄ We must pro
eed in the same way when the�uid motion does not resolve into a plane. To investigate the question taken13



in its widest sense, we shall take the individual parti
les of the �uid a�e
tingea
h other in any sort of motion, with the only proviso being that neither
ompression nor expansion o

ur in any part. We seek to determine fromthis what sort of velo
ities 
an o

ur and give a possible motion; or, what
omes to the same thing, we want to ex
lude from the list of possible motionsthose whi
h do not observe these 
onditions, so that the 
riterion for possiblemotions 
an be determined.22. So we shall 
onsider any point λ of the �uid, whose lo
ation we shallrepresent using three orthogonal axes AL, AB, AC. [Figure 2 below.℄ Let thethree 
oordinates of the point λ parallel to these axes be AL = x, Ll = y and
lλ = z; whi
h will be gotten if from the point λ a perpendi
ular λl is droppedto the plane determined by the two axes AL and AB. From the point l wethen take the perpendi
ular lL to the axis AL. In this way the lo
ation ofthe point λ 
an generally be expressed by three 
oordinates. This will applyat all points of the �uid.
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23. The motion of the point λ 
an be resolved into three dire
tions λµ. λνand λo parallel to the axes AL, AB and AC. So let the three dire
tions ofthe velo
ity of the point λ be λµ = u, λν = v, λo = w ; and sin
e thesevelo
ities 
an vary with the point λ, they 
an be 
onsidered as fun
tions ofthe three 
oordinates x, y and z. Taking di�erentials, we get the forms:
du = Ldx + ldy + λdz

dv = Mdx + mdy + µdz

dw = Ndx + ndy + νdz
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and the 
oe�
ients L, l, λ, M, m, µ, N, n, ν will be fun
tions of the 
oor-dinates x, y and z.24. As these di�erential forms are 
omplete, it follows, in the same way asthe above, that
dL/dy = dl/dx; dL/dz = dλ/dx; dl/dz = dλ/dy

dM/dy = dm/dx; dM/dz = dµ/dx; dm/dz = dµ/dy

dN/dy = dn/dx; dN/dz = dν/dx; dn/dz = dν/dyea
h fra
tion showing how mu
h the variable in the numerator 
hanges for agiven 
hange in the 
oordinate in the denominator.25. In an in�nitesimal time dt, the point λ 
an move in all three dire
tions:by the amounts udt in the dire
tion of AL, vdt in the dire
tion of AB, wdt inthe dire
tion of AC. Sin
e however the speed of the point λ, whi
h we may
all V, arises from the 
omposition of the motions in the three dire
tions,whi
h are orthogonal, we shall have V =
√

(uu + vv + ww), and the distan
etraveled in the time dt will be = V dt.26. Let us now 
onsider any volume element of the �uid, to see where itmay advan
e to in an in�nitesimal time dt. Sin
e it does not matter what�gure we attribute to it, as long as the whole �uid mass 
an be divided intosu
h �gures, for ease of 
al
ulation let the �gure be a re
tangular triangular16



pyramid, ending at the four solid angles4 λ, µ, ν, o so that the the 
oordinatesare given by the s
heme:along: λ µ ν oAL x x + dx x xAB y y y + dy yAC z z z z + dzand sin
e the base of this pyramid is λµν = lmn = 1

2
dxdy, and the altitudeis λo = dz, the volume will be = 1

6
dxdydz.27. We shall now investigate where these individual verti
es λ, µ, ν, o willbe 
arried in the in�nitesimal time dt. For ea
h of these, we must 
onsiderthe three velo
ities along the three 
oordinate axes, for these will di�er fromthe three original velo
ities u, v, w a

ording to the following s
heme.5Parallel to λ µ ν oAL u u + Ldx u + ldy u + λdzAB v v + Mdx v + mdy v + µdzAC w w + Ndx w + ndy w + νdz28. If the points λ, µ, ν, o are 
arried in the in�nitesimal time dt to points

π, φ, ρ, and σ, whose 
oordinates are given parallel to the three axes, the4This is a di�erent set of meanings for these symbols.5Remember that Euler uses λ, µ, ν with two sets of meanings.17



instantaneous translations along these axes will be: [for λ → π,℄
AP − AL = udt,

Pp − Ll = vdt,

pπ − lλ = wdt;[for µ → φ℄
AQ − AM = (u + Ldx)dt,

Qq − Mm = (v + Mdx)dt,

qφ − mµ = (w + Ndx)dt,[for ν → ρ ℄
AR − AL = (u + ldy)dt,

Rr − Ln = (v + mdy)dt,

rρ − nν = (w + ndy)dt,[for o → σ ℄
AS − AL = (u + λdz)dt,

Ss − Ll = (v + µdz)dt,

sσ − lo = (w + νdz)dt.18



Thus we shall have as 
oordinates for the four points6: [for π ℄
AP = x + udt,

Pp = y + vdt,

pπ = z + wdt;[for φ℄
AQ = x + dx + (u + Ldx)dt,

Qq = y + (v + Mdy)dt,

qφ = z + (w + Ndx)dt;[for ρ℄
AR = x + (u + ldy)dt,

Rr = y + dy + (v + mdy)dt,

rρ = z + (w + ndy)dt;6[The original had a misprint.℄
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[for σ℄
AS = x + (u + λdz)dt,

Ss = y + (v + µdz)dt,

sσ = z + dz + (w + νdz)dt.29. When therefore the verti
es λ, µ, ν, o of the pyramid are translatedinto points π, φ, ρ, σ in the in�nitesimal time dt, these new points are to de-termine a triangular pyramid su
h that the volume of both be equal, namely
= 1

6
dxdydz. So the task 
omes down to determining the volume of the pyra-mid πφρσ.7It is 
lear, however, that this pyramid is what we have left if from the volumeelement pqrπφρσ we take away the element pqrπφρ , for the latter element isa prism sitting perpendi
ularly8 on the triangular base pqr, with the upperoblique se
tion πφρ 
ut o�.30. In any trun
ated prism of this type, the element pqrπφρ 
an be resolvedinto three other volumes, whi
h are:7The following paragraphs up through 36 are devoted to this task. If we allow use ofthe determinantal formula for a parallelpiped, then the equation at the end of 35 followsimmediately, whi
h implies that ∇ · u = 0.8The triangle πφρ di�ers from pqr only in the z−
oordinates.
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I. pqsπφσII. prsπρσIII. qrsφρσin su
h a way that we must have
1

6
dxdydz = pqrsπφσ + prsπρσ + qrsφρσ − pqrπφρ.When however a prism of this sort sits perpendi
ularly on its lower base, withthree di�erent altitudes, then its volume is found if the base is multiplied bythe sum of the three altitudes, divided by three.31. Therefore the volume of these trun
ated prisms will be:

pqsπφσ =
1

3
pqs(pπ + qφ + sσ),

prsπρσ =
1

3
prs(pπ + rρ + sσ),

qrsφρσ =
1

3
qrs(qφ + rρ + sσ),

pqrπφρ =
1

3
pqr(pπ + qφ + rρ).Sin
e however pqr = pqs + prs + qrs, the sum of the �rst three volumes,minus the last, will be

1

6
dxdydz = −1

3
pπ.qrs − 1

3
qφ.prs − 1

3
rρ.pqs +

1

3
sσ.pqr;21



or
dxdydz = 2pqr.sσ − 2pqs.rρ − 2prs.qφ − 2qrs.pπ.32. It remains to as
ertain the bases of these prisms. Before we do this, toredu
e 
al
ulations we put9
AQ = AP + Q; Qq = Pp + q; qφ = pπ + φ,

AR = AP + R; Rr = Pp + r; rρ = pπ + ρ,

AS = AP + S; Ss = Pp + s; sσ = pπ + σand with these substitutions, the terms 
ontaining pπ 
an
el ea
h other, andwe shall have
dxdydz = 2pqr.σ − 2pqs.ρ − 2prs.φand the number of bases to be investigated is redu
ed by one.33. Now the triangle pqr will be found, if the trapezoid PpqQ is 
ut outfrom the �gure PprqQ, or from the 
ombined trapezoids PprR + RrqQ .Hen
e

△pqr =
1

2
PR(Pp + Rr) +

1

2
RQ(Rr + Qq) − 1

2
PQ(Pp + Qq);9This orrespondd to the abbreviations in paragraph 18.
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but sin
e PR = R, RQ = Q − R, and PQ = Q, we shall have
△pqr =

1

2
R(Pp − Qq) +

1

2
Q(Rr − Pp) =

1

2
Qr − 1

2
Rq.In a similar way we shall have:

△pqs =
1

2
PS(Pp + Ss) +

1

2
SQ(Ss + Qq) − 1

2
PQ(Pp + Qq),

△pqs =
1

2
S(Pp + Ss) +

1

2
(Q − S)(Ss + Qq) − 1

2
Q(Pp + Qq)when
e

△pqs =
1

2
S(Pp − Qq) + Q(Ss − Pp) =

1

2
Qs − 1

2
Sq.Next,

△prs =
1

2
PR(Pp + Rr) +

1

2
RS(Rr + Ss) − 1

2
PS(Pp + Ss),

△prs =
1

2
R(Pp + Rr) +

1

2
(S − R)(Rr + Ss) − 1

2
S(Pp + Ss)when
e

△prs =
1

2
R(Pp − Ss) +

1

2
S(Rr − Pp) =

1

2
Sr − 1

2
Rs.34. Substituting in these values, we shall obtain

dxdydz = (Qr − Rq)σ + (Sq − Qs)ρ + (Rs − Sr)φ,23



so the volume of the pyramid πφρσ will be
1

6
(Qr − Rq)σ +

1

6
(Sq − Qs)ρ +

1

6
(Rs − Sr)φ.From the values re
orded in paragraph 28 above,

Q = dx + Ldxdt q = Mdxdt φ = Ndxdt

R = ldydt r = dt + mdydt ρ = ndydt

S = λdzdt s = µdzdt σ = dz + νdzdt.35. Sin
e it follows that
Qr − Rq = dxdy(1 + Ldt + mdt + LMdt2 − MLdt2)

Sq − Qs = dxdz(−µdt − Lµdt2 + Mλdt2)

Rs − Sr = dydz(−λdt− mλdt2 + lµdt2),therefore we �nd that the volume of the pyramid πφρσ is expressed as
1

6
dxdydz
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whi
h should be held equal to the volume of the pyramid λµνo = 1

6
dxdydz .After dividing by dt, there results the equation

0 = L + m + ν +dt(Lm + Lν + mν − Ml − Nλ − nµ)

+dt2(Lmν + Mnλ + Nlµ − Lnµ − Mlν − Nlµ).36. Disregarding the in�nitely small terms, we have the equation L + m +

ν = 0, in whi
h we have as
ertained the 
ondition on the velo
ities u, v, wto admit the �uid motion as possible. Sin
e L = du/dx, m = dv/dy and ν =

dw/dz, the 
ondition for a possible motion, when any point with 
oordinatevalues x, y, z has 
orresponding velo
ities u, v, w, will therefore be:
du

dx
+

dv

dy
+

dw

dz
= 0.By this 
ondition10 no part of the �uid will pass into a greater or smallerspa
e, and the 
ontinuity of the �uid (and also the density) will be maintainedwithout interruption.37. This property of the �uid, however, is to be interpreted to hold forall parts of the �uid at ea
h moment in time: that is, at ea
h moment thethree velo
ities u, v, w for all points ought to be su
h fun
tions of the three
oordinates x, y and z, that du/dx + dv/dy + dw/dz = 0 will hold, and this
hara
ter of those fun
tions limits any proposed motion of the individual10Euler has a
tually proved that this is a ne
essary 
ondition.25



points of the �uid. At any other time, however, the motion of those points
ould be quite di�erent, restri
ted only by the requirement that the aboveproperty still take pla
e. Of 
ourse, the same behavior up to the present isassumed.38. If however we wish to think of time also as variable, so that the motionof a point after an elapsed time t is to be de�ned, when the position λ isgiven by the 
oordinates AL = x, Ll = y, and lλ = 11, it is 
lear that thethree velo
ities u, v, w depend not only on the 
oordinates x, y and z, butalso on the time t, so that they are fun
tions of these four quantities x, y, zand t, so that12
du =Ldx + ldy + λdz + Ldt,

dv =Mdx + mdy + µdz + Mdt,

dw =Ndx + ndy + νdz + N dt.Meanwhile however, we shall always have L + m + ν = 0, be
ause at anyinstant the time t is to be taken as 
onstant, so that dt = 0. Thus it isne
essary� however the fun
tions u� v� w may 
hange with time� that at ea
h11A, L, l, λ represent points is spa
e, while the L, l and λbelow represent di�erential
oe�
ients.12I have substituted 
alligraphi
 for German letters in this translation. It is too di�
ultfor non-Germans to distinguish between the German N and R.
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moment there holds the 
ondition
du

dx
+

dv

dy
+

dw

dz
= 0.Sin
e this 
ondition assures that any portion of the �uid will be 
arried inthe in�nitesimal time dt into an equal volume, and also likewise under thesame 
ondition in the following element of time, it follows that this musthappen in all following elements of time.

Part Two39. [Dynami
s.℄ From those possible motions� whi
h have satis�ed the above
ondition� we shall now investigate the nature of that motion whi
h a
tually
an be sustained in the �uid. That is� besides the 
ontinuity of the �uid� andits density being 
onstant, a

ount must be taken here of the for
es a�e
tingthe movement of individual elements of the �uid. For whatever the motionof ea
h element� if it is not uniform or not pointed in a [
ommon℄ dire
tion�the 
hange of motion ought to 
onform to the for
es applied to this element.No matter how the 
hange of motion is determined by these given for
es� theabove formulas must still be a 
onstraint on this 
hange of motion� so new
onditions must be found, by whi
h any hitherto possible motion is restri
tedto the a
tual motion. 27



40. [Planar motion.℄ Let us also set up this investigation in two parts; and��rst� we shall think of all the motion of the �uid as taking pla
e in thesame plane
 Therefore let the position 
oordinates of any point l be de�nedas before as AL = x, Ll = y; and now in the elapsed time t let the twovelo
ities of l in dire
tions parallel to the axes AL and AB be u and v ;be
ause we now have to take a

ount the 
hange in time� u and v will befun
tions of x� y and t, so that13
du =Ldx + ldy + Ldt,

dv =Mdx + mdy + Mdt;and on a

ount of the 
ondition that we found above we must have L + m = 0.41. In the in�nitesimal elapsed time dt� let therefore the point l be broughtto p� with a displa
ement = udt in the dire
tion of the axis AL and witha displa
ement = vdt in the dire
tion of the other axis AB; to obtain thein
rease in the velo
ities u and v of the point l whi
h o

ur in the in�nitesimaltime dt, the distan
e dx ought to be written udt and the distan
e dy as vdt,so that
du =Ludt + lvdt + Ldt,

dv =Mudt + mvdt + Mdt,13In modern notation, L = ∂u∂t, and M = ∂v/∂t.28



from whi
h the a

elerative for
es14 needed to produ
e these a

elerations inthe 
orresponding dire
tions will be:
along AL : 2(Lu + lv + L)

along AB : 2(Mu + mv + M)and the for
es a
ting on the parti
le of water l should be equal to theseexpressions.42. Among the for
es that a
t on the parti
les of water, we have to give�rst 
onsideration to gravity. Its e�e
t will be null, if the plane of motion ishorizontal. If however the plane of motion is at an in
line, in the dire
tion ofthe axis AL, the horizontal axis beingAB, the a

elerative for
e due to gravitywill take a 
onstant value α in the dire
tion of AL. Moreover, we ought not tonegle
t fri
tion, be
ause the motion is often there-by appre
iably impeded.Although the laws governing fri
tion are not yet satisfa
torily established,never-the-less we shall perhaps not err too mu
h from the mark if , in analogywith the fri
tion of solid bodies, we set the fri
tion to be proportional to thepressure of the parti
les of water a
ting on ea
h other.14Euler de�nes the measure of for
e as the a

eleration needed to move a unit mass a unitdistan
e in the dire
tion of the for
e, in a unit time. Sin
e our notion of a

eleration willgive one-half of a unit distan
e, Euler's measure of for
e will require twi
e our a

eleration.
29



43. As the �rst step then, we must 
ompute the pressure with whi
h theparti
les of water are a
ting on ea
h other. For a parti
le pressed all aroundby adja
ent parti
les, to the extent that the pressure in some dire
tion is notbalan
ed, just so mu
h will the motion of the parti
le be a�e
ted. 15 That isto say, the water at ea
h point is subje
t to a 
ertain state of 
ompression,whi
h will be like what o

urs in still water at a 
ertain depth. It is 
onvenientto use this depth, at whi
h still water is found to be in the same state of
ompression, as an expression for the pressure at any point l of the water.Therefore, if p is that still-water depth that expresses the pressure at pointl, then p will be a 
ertain fun
tion of the 
oordinates x and y, and if the thepressure at l also varies with time, p will also be a fun
tion of time t.44. Therefore we shall put dp = Rdx + rdy +Rdt, and we shall 
onsider are
tangular element of water lmno [Fig. 3℄, whose sides are lm = no = dxand ln = mo = dy; the area being = dxdy.15Euler is 
onsidering a material parti
le extending in ea
h dire
tion.
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If now the pressure at l is = p, the pressure at m will be = p + Rdx, at n
= p + rdy and at o will be = p + Rdx + rdy. Then the side lm is pressed bya for
e = dx(p+ 1

2
Rdx). while the opposite side no will be pressed by a for
e

= dx(p+ 1

2
Rdx+ rdy). From these two for
es, the element lmno will be havea resulting for
e in the dire
tion of ln that is = −rdxdy. In the same way,from the for
es dy(p + 1

2
rdy) and dy(p + Rdx + 1

2
rdy) whi
h a
t on the sidesln and mo, the resulting for
e a
ting on the element in the dire
tion lm willbe = −Rdxdy.45. Hen
e there arises an a

elerative for
e in the dire
tion of lm that is

= −R, and an a

elerative for
e in the dire
tion of ln that is = −r. The�rst of these along with the for
e due to gravity will then be α − R. Absentfri
tion, we shall have the equations α − R = 2Lu + 2lv + 2L or
31



R = α − 2Lu − 2lv − 2L,and −r = 2Mu + 2mv + 2M or
r = −2Mu − 2mv − 2Mwhi
h together give us

dp = αdx − 2(Lu + lv + L)dx − 2(Mu + mv + M)dy + Rdt.This di�erential should be 
omplete, that is, integrable.46. Sin
e the term αdx is already integrable, and as of yet we know nothingof Rdt, by the very nature of 
omplete di�erentials it is ne
essary for theabove expression that
d(Lu + lv + L)

dy
=

d(Mu + mv + M)

dxand then
e, be
ause du/dx = L, du/dy = l, dv/dx = M, and dv/dy = m,

Ll +
udL

dy
+ lm +

vdl

dy
+

dL
dy

= ML +
udM

dx
+ mM +

vdm

dx
+

dM
dx
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whi
h redu
es to this formula:
(L + m)(l − M) + u

(

dL

dy
− dM

dx

)

+ v

(

dl

dy
− dm

dx

)

+
dL
dy

− dM
dx

= 0.47. Sin
e Ldx+ldy+Ldt and Mdx+mdy+Mdt are 
omplete di�erentials16,we know that
dL

dy
=

dl

dx
;

dm

dx
=

dM

dy
;

dL
dy

=
dl

dt
and

dM
dx

=
dM

dt
,and when these expressions are substituted, we shall have the equation:17

(L + m)(l − M) + u

(

dl − dM

dx

)

+ v

(

dl − dM

dy

)

+
dl − dM

dt
= 0whi
h 
learly will be satis�ed by l = M : that is, by du/dy = dv/dx. Thislatter 
ondition requires in turn that udx + vdy be a 
omplete di�erential,and this latter is the desired 
ondition des
ribing those motions that are tobe allowed.1848. This 
riterion is independent of the previous one of 
ontinuity anduniform density. For this property that udx + vdy be a 
omplete di�erentialwould still apply, even if the moving �uid were to 
hange its density, as inthe motion of elasti
 �uids, or as happens in air. That is, the velo
ities u16= du and dv respe
tively.17I have 
orre
ted some obvious misprints on this page.18See translator's 
omment to this paragraph.33



and v would be su
h fun
tions of the 
oordinates x and y that at any �xedtime t the expression udx + vdy would be 
ompletely integrable.49. We are now in a position to de�ne the pressure p, whi
h we need todetermine 
ompletely the motion of the �uid. Sin
e we have found that
M = l, we shall have19

dp = αdx− 2u(Ldx + ldy) − 2v(ldx + mdy) − 2Ldx− 2Mdy + Rdt.From Ldx + ldy = du − Ldt and ldx + mdy = dv −Mdt,

dp = αdx − 2udu − 2vdv + 2Ludt + 2Mvdt− 2Ldx − 2Mdy + Rdt.If we wish to de�ne the pressure at ea
h lo
ation for a given �xed time20, theequation to be 
onsidered is:
dp = αdx − 2udu − 2vdv − 2Ldx − 2Mdyand, on writing L = du/dt and M = dv/dt, we then get

dp = αdx − 2udu − 2vdv − 2
du

dt
dx − 2

dv

dt
dy.19A
tually, the argument in the next two lines does not depend on M = l.20That is, to get the spatial gradient of pressure.34



In integrating this equation, the time t is to be held 
onstant.50. Given the hypotheses, [we shall see that℄ this equation is integrable, ifwe take into a

ount the 
riterion that udx + vdy be a 
omplete di�erential,keeping the time t 
onstant. Let S be its integral, whi
h is a fun
tion of x, yand t, whi
h gives dS = udx + vdy when dt = 0. If we further allow t to bevariable, this be
omes
dS = udx + vdy + Udt.Then we shall have du/dt = dU/dx and dv/dt = dU/dy. Then U = dS/dt.51. Introdu
ing these expressions gives us:

du

dt
dx +

dv

dt
dy =

dU

dx
dx +

dU

dy
dywhose integral for a �xed time t is 
learly = U. To make this more 
learlyapparent, let us put dU = Kdx + kdy, so dU/dx = K and dU/dy = k. Then

dU

dx
dx +

dU

dy
dy = Kdx + kdy = dU.The integral of this equation being = U = dS/dt, then

dp = αdx − 2udu − 2vdv − 2dU35



whi
h upon integration yields:
p = Const. + αx − uu − vv − 2

dS

dt
,

S being a fun
tion of x, y and t. For dt = 0, its di�erential is udx + vdy.52. To understand better the nature of this formula, we shall 
onsider thespeed at a point l, whi
h will be = V =
√

(uu + vv). The pressure moreoverwill be: p = Const. + αx − uu − vv − 2dS/dt. The S in the last term dSdenotes S =
∫

(udx + vdy), where we view the time t as variable.53. Suppose we now wished to in
lude a fri
tion term that is proportionalto the pressure p in e�e
t while the point l traverses an in�nitesimal distan
e
ds. The retarding for
e arising from the fri
tion would then be = p/f. Putting
dS/dt = U, our di�erential equation at a de�nite point t in time be
omes:

dp = αdx − p

f
ds − 2V dV − 2dU.Let e be the number whose hyperboli
 logarithm is = 1. Integration thengives21

p = e−s/f

∫

es/f (αdx − 2V dV − 2dU)21The orginal has dV instead of dU.
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or
p = αx − V V − 2U − 1

f
e−s/f

∫

es/f (αx − V V − 2U)ds.54. For the �uid motion that is a
tually to be sustained, the 
riterionis that udx + vdy be a 
omplete di�erential at any �xed time t22. The
ontinuity 
ondition requires that the density stay 
onstant and uniform sothat du/dx + dv/dy will be = 0, when
e it follows that −udy + vdx is a
omplete di�erential23. Thus the velo
ity 
omponents u and v together mustbe fun
tions of x, y and t su
h that both the expressions udx + vdy and
−udy + vdx are 
omplete di�erentials.55. [Flows in three dimensions.℄ Let us now start to investigate the 
ase wherethe three velo
ity 
omponents u, v, w of the point λ, dire
ted along the axes
AL, AB, AC, are fun
tions of the 
oordinates x, y, z, and of the time t,su
h that

du = Ldx + ldy + λdz + Ldt

dv = Mdx + mdy + µdz + Mdt

dw = Ndx + ndy + νdz + N dt;and, a

ording the the 
ondition given earlier, we must have L + m + ν = 0even if the time t is allowed to vary. This is the same as
du

dx
+

dv

dy
+

dw

dz
= 0.22See the translator's 
omment for paragraph 47.23This expression la
ks the minus sign both times it appears in this paragraph.37



This 
ondition will not be used in the present part of our analysis.2456. After an in�nitesimal time dt, the point λ is brought to position π. Ittraverses a distan
e = udt in the dire
tion of the axis AL, a distan
e = vdtin the dire
tion of AB, and a distan
e = wdt in the dire
tion of AC. Thethree velo
ity 
omponents for the point λ at postion π will be:
along AL = u + Ludt + lvdt + λwdt + Ldt,

along AB = v + Mudt + mvdt + µwdt + Mdt,

along AC = w + Nudt + nvdt + νwdt + N dt.Then the a

elerations along these same dire
tions will be:
along AL = 2(Lu + lv + λw + L),

along AB = 2(Mu + mv + µw + M),

along AC = 2(Nu + nv + νw + N ).57. Let us take the axis AC in the verti
al dire
tion, so that the othertwo axes AL and AB are horizontal. Along the axis AC, there shall be ana

elerative for
e = −1 due to gravity. The pressure p of point λ will have adi�erential
dp = Rdx + rdy + ρdz,24The 
ondition will be re-introdu
ed in paragraph 64.
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if time is held 
onstant. There arise from this the three a

elerations
AL : −R, AB : −r, AC : −ρ.These various equations are 
ombined in the same way that we used in para-graphs 44 and 45, and we need not repeat the argument here. The resultwill be the equations:

R = −2(Lu + lv + λw + L),

r = −2(Mu + mv + µw + M),

ρ = −1 −2(Nu + nv + νw + N ).58. Sin
e however the form dp = Rdx + rdy + ρdz must represent a
omplete di�erential, we shall have
dR/dy = dr/dx; dR/dz = dρ/dx; dr/dz = dρ/dy.After di�erentiation and dividing by -2, we shall obtain the three equations25

I











uLy + vly + wλy + Ly +Ll + lm + λn =

uMx + vmx + wµx + Mx +ML + mM + µN,25To in
rease legibility in these two paragraphs, I follow the more modern pra
ti
eindi
ating partial derivatives by subs
ripts. In modern terms, Euler has taken the 
urlto eliminate the pressure gradient. The dependent variables in the resulting di�erentialequations in paragraph 59 be
ome the vorti
ity 
omponents.39



II











uLz + vlz + wλz + Lz +Lλ + lµ + λν =

uNx + vnx + wνx + Nx +NL + nM + νN,

III











uMz + vmz + wµz + Mz +Mλ + mµ + µν =

uNy + vny + wνy + Ny +Nl + nm + νn.59. By the property of 
omplete di�erentials,26
Ly = lx; mx = My; λy = lz; µx = Mz ; Ly = lt; Mx = Mt,

Lz = λx; lz = λy; nx = Ny; νx = Nz; Lz = λt; Nx = Nt,

Mz = µx; Ny = nx; mz = µy; νy = nz; Mz = µt; Ny = nt.Substitute these in the above three equations, whi
h then be
ome
(

dl − dM

dt

)

+u

(

dl − dM

dx

)

+v

(

dl − dM

dy

)

+w

(

dl − dM

dz

)

+(l − M) (L + m)+λn−µN = 0,

(

dλ − dN

dt

)

+u

(

dλ − dN

dx

)

+v

(

dλ − dN

dy

)

+w

(

dλ − dN

dz

)

+(λ − N) (L + ν)+lµ−nM = 0,

(

dµ − dn

dt

)

+u

(

dµ − dn

dx

)

+v

(

dµ − dn

dy

)

+w

(

dµ − dn

dz

)

+(µ − n) (m + ν)+Mλ−Nl = 0.26Ea
h line of equalities is used in the 
orresponding equation of the previous paragraph.40



60. It is 
lear that these three equations are satis�ed on setting:27
l = M ; λ = N ; µ = N ;and therein lies the 
ondition as derived from our analysis of applied for
es.28These 
an be expressed in our usual notation as

du
dy = dv

dx; du
dz = dw

dx ; dv
dz = dw

dy .These, however, are the very 
onditions required for the form udx + vdy +

wdz to be a 
omplete di�erential. This 
ondition then states that the threevelo
ity 
omponents u, v, w be fun
tions of x, y, z along with t, su
hthat at any �xed time the form udx + vdy + wdz admit an integral.61. For a �xed moment in time (i.e., dt = 0), then, we have
du =Ldx + Mdy + Ndz

dv =Mdx + mdy + ndz

dw =Ndx + ndy + νdz27See translator's 
omment for this paragraph.28quibus 
ontinetur 
riterium, quod 
onsideratio solli
itationum suppeditat.
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and the values for R, r, ρ will be:
R = −2(Lu + Mv + Nw + L),

r = −2(Mu + mv + nw + M),

ρ = −1 −2(Nu + nv + νw + N ).We shall have this equation for the pressure:
dp = −dz −2u(Ldx + Mdy + Ndz)

−2v(Mdx + mdy + ndz)

−2w(Ndx + ndy + νdz)

−2Ldx − 2Mdy − 2N dz

= dz − 2udu − 2vdv − 2wdw − 2Ldx − 2Mdy − 2N dz.62. Sin
e L = du/dt; M = dv/dt; N = dw/dt, integration gives
p = C − z − uu − vv − ww − 2

∫
(

du

dt
dx +

dv

dt
dy +

dw

dt
dz

)

.By the 
ondition found above, udx + vdy + wdz will be integrable, and we
an take this integral to be = S. A variable time t 
an now be allowed, andwe 
an take
dS = udx + vdy + wdz + Udt,42



with du/dt = dU/dx; dv/dt = dU/dy; dw/dt = dU/dz.
29 Consequently,for that point in time assumed in the above integral,

dU

dx
dx +

dU

dy
dy +

dU

dz
dz = dUand we shall have

p = C − z − uu − vv − ww − 2U,or30
p = C − z − uu − vv − ww − 2

dS

dt
.63. The form uu + vv + ww is seen to express the square of the speed Vat the point λ, so the equation for the pressure be
omes

p = C − z − V V − 2
dS

dt
.To evaluate this, �rst we must seek the integral S of the form udx+vdy+wdz.Its di�erential with only the time t being variable will be divided by dt, whi
hwill give the value of dS/dt, whi
h then goes into the expression we foundfor the pressure.29Also, U = ∂S/∂t.30The original has dS/ds. 43



64. If we now 
onjoin the earlier 
riterion whi
h 
onstrains any possiblemotion, then the three velo
ity 
omponents u, v, w should be su
h fun
tionsof the 
oordinates x, y and z with [�xed?℄ time t, that �rst udx + vdy + wdzbe a 
omplete di�erential, and also that du/dx + dv/dy + dw/dz = 0. Anymotion of the �uid must be subje
t to these 
onditions, if the density istaken not to vary. Moreover, if the form udx+vdy +wdz+Udt is a 
ompletedi�erential with variable time t, then the state of the pressure at any point
λ is expressed in terms of a depth p with

p = C − z − uu − vv − ww − 2U.This holds when the �uid experien
es gravity in the z -dire
tion, the planeBAL being horizontal.65. [More general 
ase.℄ Suppose we assign a di�erent dire
tion for gravity,or we allow any variable for
es to a
t on individual parti
les of the �uid,so that a di�eren
e in the value of the pressure p would now enter. Therewould still be no 
hange in the law governing the velo
ity 
omponents ofea
h point of the �uid. The three velo
ity 
omponents must always be so
onstituted su
h that udx + vdy + wdz be a 
omplete di�erential, and su
hthat du/dx+dv/dy +dw/dz = 0. The three velo
ity 
omponents u, v, w 
anbe set up in an in�nite number of ways to satisfy these two 
onditions ; andthen the �uid pressure 
an be assigned at ea
h point.44



66. It will be mu
h more di�
ult, however, to determine the motion of the�uid at ea
h point when variable applied for
es and pressure are assigned.For in these 
ases we need to �nd various equations of the form p = C −

z − uu − vv − ww − 2U. The fun
tions u, v, w have to be de�ned to satisfynot only su
h equations, but also the previously spe
i�ed laws. This willrequire the utmost analyti
al skill. The sensible approa
h is to inquire intothe nature of suitable fun
tions whi
h would 
onform to ea
h 
riterion.67. The best pla
e to start is with the integral whose di�erential is udx+

vdy + wdz when time is held �xed. Let S be this integral, whi
h will be afun
tion of x, y, and z, for �xed but arbitrary time t. If the quantity S isdi�erentiated, the 
oe�
ients of the di�erentials dx, dy, dz will provide thevelo
ity 
omponents u, v, w whi
h obtain at the 
urrent time at the �uidpoint whose 
oordinates are x, y and z. The question now 
omes down tothis: to de�ne what fun
tions of x, y and z may be allowed for S so that wealso have du/dx + dv/dy + dw/dz = 0. Sin
e u = dS/dx, v = dS/dy, and
w = dS/dz, this means that

ddS

dx2
+

ddS

dy2
+

ddS

dz2
= 0.

45



68. [Spe
ial solutions.℄ Sin
e it is not obvious how in general this 
an bemade to happen, I shall 
onsider 
ertain 
lasses of possibilities. Let then
S = (Ax + By + Cz)n.Then dS/dx = nA(Ax+By+Cz)n−1 and ddS/dx2 = n(n−1)AA(Ax+By+

Cz)n−2, and similar forms will hold for ddS/dy2 and ddS/dz2. From this itmust be that
n(n − 1)(Ax + By + Cz)n−2(AA + BB + CC) = 0.This will be satis�ed in the �rst 
ase when either n = 0 or n = 1. From thesewill obtain two suitable solutions, namely S = 
onstant and S = Ax + By +

Cz, where the 
onstants A, B, C and the time 
an be 
hosen arbitrarily.69. If however n is neither 0 nor 1, then we ne
essarily have31 AA+BB +

CC = 0. A suitable solution for S will now be
S = (Ax + By + Cz)nin whi
h the order n 
an be any number, but the time t 
an enter into thisorder n. It is 
lear that any 
ombination of su
h forms 
an be taken for the31Evidently we are now 
onsidering 
omplex numbers.46



solution S, so that:
S =α + βx + γy + δz + ǫ(Ax + By + Cz)n′

+ ζ(A′x + B′y + C ′z)n′′

+ η(A′′x + B′′y + C ′′z)n′′′

+ θ(A′′′x + B′′′y + C ′′′z)n′′′′

etc.as long as
AA + BB + CC = 0;

A′A′ + B′B′ + C ′C ′ = 0;

A′′A′′ + B′′B′′ + C ′′C ′′ = 0 etc.70. Suitable formulas for S for the smaller orders, where the 
oordinatesx, y, z are raised to the �rst, se
ond, third or fourth powers, will be thefollowing:32
I. S = A,

II. S = Ax + By + Cx,

III. S = Axx + Byy + Czz + 2Dxy + 2Exz + 2Fyz

(A + B + C = 0),

IV. S = Ax3 + By3 + Cz3 + 3Dxxy + 3Fxxz + 3Hyyz + 6Kxyz

A + E + G = 0; B + D + I = 0; C + F + H = 0;32See 
omment on this paragraph at the end of the do
ument.
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+Ax4 + 6Dxxyy + 4Gx3y + 4Hxy3 + 12Nxxyz

V. S = +By4 + 6Exxzz + 4Ix3z + 4Kxz3 + 12Oxyyz

+By4 + 6Exxzz + 4Ix3z + 4Kxz3 + 12Oxyyz

where A + D + E = 0 G + H + P = 0,

B + D + F = 0 I + K + O = 0,

C + E + F = 0 L + M + N = 0.

71. We 
an now see how to get the like formulas for any order. First,the same numeri
al 
oe�
ients are given in the individual terms as o

ur inthe law of permutation of quantities � that is, whi
h arise if the trinomial
x+y+z is raised to that order power. Next, inde�nite literalsA, B, C, et
. aremultiplied into these numeri
al 
oe�
ients. Then, without regard to theseliterals, 
he
k wherever there o

ur three terms of the type LZxx+MZyy +

NZzz, whi
h have the same 
ommon fa
tor arising from the variables.33 Asoften as this o

urs, spe
ify that the sum L + M + N of the three literals beset to zero. For example, for the �fth power there will be had
+Ax5 + 5Dx4y + 5Dx4z + 10Gx3yy + 10Gx3zz + 20Kx3yz + 30Nxyyzz

S = +By5 + 5Exy4 + 5Ey4z + 10Hx2y3 + 10Hy3zz + 20Lxy3z + 30Oxxyzz

+Cz5 + 5Fxz4 + 5Fyz4 + 10Ixxz3 + 10Iyyz3 + 20Mxyz3 + 30Pxxyyz,33That is, arising from the permutations of x , y , z .
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with the following 
onditions for the literals:
A + G + G = 0; D + H + O = 0; D + I + P = 0

B + H + H = 0; E + G + N = 0; E + I + P = 0; K + L + M = 0

C + I + I = 0; F + G + N = 0; F + H + O = 0.In a similar way, there will be 15 
onditions of this type for the sixth order,21 for the seventh, 28 for the eighth, and so on.72. [n=0.℄ Now in the �rst formula S = A, the three velo
ity 
omponentswill be zero, sin
e the 
oordinates x, y and z do not appear at all. Thisdes
ribes a �uid at rest. The pressure at any point, however, 
an be variablewith the time. For A is an arbitrary fun
tion of time, and so the pressure ata point λ and time t will be p = C−2dA
dt
−z. This formula indi
ates the stateof a �uid subje
t to any for
es whatsoever at any point in time, so long asthe for
es balan
e ea
h other so that no motion of the �uid will arise. Thiswill happen for example if the �uid is 
ontained in a vase without a meansof egress, yet subje
t to any sort of for
es.73. [n=1.℄ For the formula S = Ax+By +Cz, di�erentiation at the point

λ will give three velo
ity 
omponents:
u = A; v = B & w = C.49



Thus, at a given time, all points of the �uid will be 
arried with the samemotion, in the same dire
tion. Then the �uid as a whole will move like a solidbody, 
arried by a 
ommon but 
hanging motion. At a di�erent point in time,as the applied external for
es 
hange, the motion will di�er a

ordingly inboth speed and dire
tion. If, for point λ, the fun
tions of time are A, B andC, then the pressure will be p = C−z−AA−BB−CC−2xdA
dt
−2y dB

dt
−2z dC

dt
.3474. [n=2.℄ The third formula S = Axx+Byy+Czz+2Dxy+2Exz+2Fyzwith A + B + C = 0 will yield three velo
ity 
omponents at the point λ :35u = 3Ax + 2Dy + 2Ez; v = 2By + 2Dx + 2Fz; w = 2Cz + 2Ex + 2Fy, or

w = 2Ex + 2Fy − 2(A + B)z. In this 
ase, at any moment in time di�erentpoints in the �uid will be 
arried in di�erent motions. At the next moment intime, moreover, the motion of ea
h point 
an be variable in any way, be
ausethe fun
tions for A, B, C, D, E, F 
an be of any sort. Even more variety 
ano

ur if 
omposite fun
tions are used for S.75. [Investigating the possibility of a 
ommon rotation.℄ In the se
ond 
ase, themotion of the �uid will 
oin
ide with the uniform motion of a solid body, soat any moment in time the di�erent parts of the �uid will be 
arried in anequal and parallel motion. We might suspe
t that the motion of the �uidin other 
ases 
an also 
oin
ide with the motion of a solid body, whetherrotational or of some other sort. For this to happen, the pyramid πφρσ must Tab. IV,Fig. 2.34The original reads: p = C − z − AA − CC − 2xdA

dt
− 2y dB

dt
− z dC

dt
.35The orginal has α instead of u. 50



ne
essarily be equal and similar to the pyramid λµνo; that is, taking overthe values shown in paragraph 32,36
πΦ = λµ = dx =

√
QQ + qq + ΦΦ

πρ = λν = dy =
√

RR + rr + ρρ

πσ = λo = dz =
√

SS + ss + σσ

Φρ = µν =
√

dx2 + dy2 =
√

(Q − R)2 + (q − r)2 + (Φ − ρ)2

Φσ = µo =
√

dx2 + dz2 =
√

(Q − S)2 + (q − s)2 + (Φ − σ)2

ρσ = ro =
√

dy2 + dz2 =
√

(R − S)2 + (r − s)2 + (ρ − σ)2.76. On 
omparison with the three �rst equations, the three last equationsredu
e to these:
QR + qr + Φρ = 0;

QS + qs + Φσ = 0;

RS + rs + ρσ = 0.If however we substitute for Q, R, S, q, r, s, Φ, ρ, σ the values assigned in36Again, with the same letters doubly used as unrelated labels and distan
es. See alsothe 
omments to paragraphs 75-77 at the end of this do
ument.
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paragraph 34, then the �rst three equations [of the previous paragraph℄ will give:
1 = 1 + 2Ldt; l + M = 0

1 = 1 + 2mdt; λ + N = 0

1 = 1 + 2νdt; µ + n = 0from whi
h we would 
on
lude that L = 0, m = 0, and ν = 0, M = −l,

N = −λ and n = −µ.77. The three velo
ity 
omponents at ea
h point λ would therefore be so
onstituted that37
du = + ldy + λdz

dv = − ldx + µdz

dw = − λdx − µdy.Now the se
ond 
ondition on the �uid motion demands that l = M, λ = Nand n = µ. Then these all vanish, and the velo
ity 
omponents u, v and wwill be the same in all parts of the �uid at any given time. It is therefore
lear that the �uid motion 
annot 
oin
ide with the motion of a rigid bodyin this 
ase.37Some minus signs were missing in the original.
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78. To determine the 
ontribution of the for
es whi
h a
t externally onthe �uid, we ought �rst to �nd the for
e needed to produ
e any spe
i�ed�uid motion. We found in paragraph 56 that these are equal to the three a
-
elerative for
es re
orded there. If we 
onsider a �uid element whose volumeor mass is = dxdydz, the motive for
es required are therefore:38
AL : = 2dxdydz(Lu + lv + λw + L) = 2dxdydz (uux + vuy + wuz + ut)

AB : = 2dxdydz (Mu + mv + µw + M) = 2dxdydz (uvx + vvy + wvz + vt)

AC : = 2dxdydz (Nu + nv + νw + N ) = 2dxdydz (uwx + vwy + wwz + wt)and triple integration gives the total for
es that ought to be applied on thewhole mass of �uid in ea
h dire
tion.79. A

ording to the se
ond 
ondition the form udx + vdy + wdz is tobe a 
omplete di�erential, whose integral is = S. With time also variable,we are to set dS = udx + vdy + wdz + Udt. Then, from du/dy = dv/dx;

du/dz = dw/dx; du/dt = dU/dx et
., those three motive for
es be
ome:
AL := 2dxdydz

udu + vdv + wdw + dU

dx
,38For the sake of legibility, I have resorted to subs
ripts here, writing for example ux inpla
e of du

dx
.
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AB := 2dxdydz
udu + vdv + wdw + dU

dy
,

AC := 2dxdydz
udu + vdv + wdw + dU

dz
.80. Let now uu+vv+ww+2U = T, T being a fun
tion of the 
oordinatesx, y, z.39 For a �xed point in time, we 
an write40

dT = Kdx + kdy + κdzand the three motive for
es of the element dxdydz are
AL : = Kdxdydz

AB : = kdxdydz

AC : = κdxdydz.Upon triple integration, these formulae extend to the whole �uid mass. Fromthese, we obtain equivalent41 expressions for for
es, and their average dire
-tions, that may be used everywhere. But this involves a truly higher level ofdi�
ulty, and I shall not dwell further on this topi
.39See 
omments for this and the following paragraph, at the end of the do
ument.40The typesetter misread κ, repla
ing it with u here and with k further down.41Equivalent to the expressions written out in paragraph 78.54



81. This quantity T = uu+vv+ww+2U introdu
ed here yields a simplerformula for the equivalent depth p that gives the pressure; it is p = C−z−T,as long as ea
h �uid parti
le is a
ted upon only by gravity. If however anyparti
le λ is subje
ted to a

elerative for
es whose 
omponents along thedire
tions AF, AB, and AC are respe
tively Q, q and Φ, then a similar
al
ulation gives the pressure as
p = C +

∫

(Qdx + qdy + Φdz) − T.It is 
lear then that Qdx + qdy + Φdz must be a 
omplete di�erential, to be
ompatible with a state of equilibrium. The 
elebrated Monsieur Clairauthas indeed shown with great 
larity that su
h a 
ondition must be imposedon the for
e 
omponents Q, q and Φ.82. [Appli
ation to hydrostati
s and hydrauli
s.℄ At �rst glan
e the prin
iplesof the general theory of �uid motion did not seem very fruitful, yet almosteverything that is known about hydrauli
s and hydrostati
s is 
ontained inthem, so it must be allowed that these prin
iples have a very broad rea
h. Tosee this more 
learly, it will be worth while to show exa
tly how the knownpre
epts of hydrostati
s and hydrauli
s follow in a 
lear and straight-forwardmanner from the prin
iples developed so far.
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83. Let us therefore 
onsider �rst a �uid at rest, so that u = 0, v = 0 and
w = 0. Sin
e then T = 2U, the pressure at any �uid parti
le λ will be

p = C +

∫

(Qdx + qdy + Φdz) − 2U.Sin
e U is a fun
tion of time t, whi
h we take �xed, we 
an fold this quantity
U into the 
onstant C, so that

p = C +

∫

(Qdx + qdy + Φdz) ,where Q, q and Φ are the for
es a
ting on the �uid parti
le λ in the dire
tionof the axes AL, AB and AC respe
tively.84. Sin
e now42 the pressure p is a fun
tion of the position of λ, that is,of the 
oordinates x, y and z, then the form ∫

(Qdx + qdy + Φdz) must bea de�nite integral fun
tion of these 
oordinates. Then it is 
lear, using thesame sort of argument as above, that the �uid 
ould not be in equilibriumunless the for
es a
ting on the individual �uid elements are so 
onstitutedthat Qdx + qdy + Φdz be a 
omplete di�erential. If we set its integral = P,then the pressure at the point λ will be p = C +P. If the only for
e is gravitya
ting in the dire
tion of CA, then p = C − z. If the pressure at one point λis spe
i�ed, thus giving the 
onstant C, then, for that one moment in time,the pressure at all other points will be 
ompletely determined.42For a �xed moment in time. 56



85. With the passage of time, the pressure at ea
h position 
an 
hange.This will surely happen if the external for
es a
ting on the �uid are variable,as these are not restri
ted ex
ept that they remain in equilibrium and do notprodu
e �uid motion. On the other hand, if these for
es do not su�er any
hange, then the literal C a
tually does signify a true 
onstant independentof time, and in that position λ the same pressure p = C + P will always befound.86. [Free surfa
e.℄ In a permanent state, the �uid's boundary 
an be deter-mined if the boundary is not subje
ted to any for
e. In a vessel, on the freesurfa
e43 where the �uid is not 
on�ned by walls of the vessel, the pressuremust ne

esarily be zero. Then the equation will be P =
onst., and theshape of the free surfa
e is thereby expressed as a relation among the three
oordinates x, y and z. At the free surfa
e we may set P = E, C = −E; andfor any internal point λ the pressure will be p = P −E. If the �uid elementsare subje
t only to gravity, so that p = C−z, then at the free surfa
e we shallhave z = C, from whi
h we may 
on
lude that the free surfa
e is horizontal.87. [Flow through narrow tubes.℄ Finally, 
on
erning �ows through tubes,everything that has been teased out by various means are easily dedu
edfrom these prin
iples. The tubes are usually taken to be very narrow, or43In this paragraph, Euler uses the terms �extrema �gura�, �extremitas�, �extrema su-per�
ies�, and other 
ombinations of these words, not using the same phrase twi
e. Helands �nally at �extrema super�
ies libera�. I have translated all these terms with themodern term �free surfa
e�. 57



else the �ow is assumed to be uniform a
ross any normal 
ross-se
tion of thetube. From these assumptions arose the rule that the speed of the �uid atany position in the tube is inversely proportional to the area of the 
ross-se
tion. So let the shape of the tube be expressed by two equations among Tab. IVFig. 2.the three 
oordinates x, y and z ; so that for any value of the abs
issa x, theother two 
oordinates y and z 
an be de�ned. Let also λ be any point of thetube.4488. Let moreover the area of the 
ross-se
tion at λ be = rr, and at another�xed position of the tube let the area be = ff, while the speed is = ◦̆,45 whi
hafter an in�nitesimal time dt be
omes ◦̆ + d◦̆. Thus ◦̆ will be a fun
tion oftime t, as will be d◦̆/dt. The velo
ity of the �uid at point λ at the 
urrenttime will be V = ff ◦̆/rr. From the shape of the tube, y and z are givenin terms of x, so that dy = ηdx and dz = θdx; when
e the three velo
ity
omponents at λ in the dire
tions of AL, AB and AC are respe
tively46:
u =

ff ◦̆
rr

1√
1 + ηη + θθ

;

v =
ff ◦̆
rr

η√
1 + ηη + θθ

;

w =
ff ◦̆
rr

θ√
1 + ηη + θθ

;44The marginal note refers to Figure 2, whose re-use is a bit of a stret
h. Or did Eulerlift this passage from another manus
ript whi
h 
ontained additional �gures?45Euler used the astronomi
al symbol whose teX 
ode is �\taurus�. One is bound tohave strong feelings about using su
h a symbol. Printing di�
ulties have for
ed me tosubstitute the makeshift ◦̆. The 
ombination ff ◦̆ is the mass �ux.46These are the speed V times the dire
tion 
osines.58



so that uu + vv + ww = V V = f 4◦̆◦̆/r4. The term rr is a fun
tion of x aswell as the dependent variables y and z.89. Sin
e udx + vdy + wdz is a 
omplete di�erential and we 
an take itsintegral to be = S, there results:
dS =

ff ◦̆
rr

dx (1 + ηη + θθ)√
1 + ηη + θθ

=
ff ◦̆
rr

dx
√

1 + ηη + θθ.But dx
√

1 + ηη + θθ represents the element47 of the tube. If we write thisas = ds, then dS = ff ◦̆ds
rr

. For a �xed time t, this is a fun
tion of ◦̆. Sin
ehowever s and rr do not depend on the time t, but only on the shape of thetube, it follows that S = ◦̆
∫

ffds
rr

.90. To �nd the pressure p whi
h obtains at the point λ in the tube, wemust 
onsider the quantity U arising from di�erentiating S when only thetime t is variable � that is, su
h that U = dS/dt. Sin
e the integral form ∫

ffds
rrdoes not involve the time t, the di�erential will be dS/dt = U = d◦̆

dt

∫

ffds
rr

;and then, from paragraph 80,
T =

f 4◦̆◦̆
r4

+
2d◦̆
dt

∫

ffds

rr
.For any posited for
es Q, q and φ a
ting on the �uid, the 
orresponding47ar
-length. 59



pressure at the point λ will be:
p = C +

∫

(Qdx + qdy + Φdz) − f 4◦̆◦̆
r4

− 2d◦̆
dt

∫

ffds

rr
.This is the formula that was to be extra
ted for �uid motion through a tube.Sin
e we allowed any sort of for
es a
ting on the �uid [in this derivation℄, it willhold all the more so when the only for
e is gravity. It is well to re
all that thefor
es Q, q and Φ had to be so 
onstituted that the form Qdx + qdy + Φdzbe a 
omplete di�erential, i.e., that it be integrable.Expli
it dissertatio de prin
ipiis motus �uidorum au
tore Leon. Eulero.
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Appendix: Table IV
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Translator's 
ommentsI �nd that Euler's Latin is in general very pre
ise. Almost all obs
urities in hismeaning or ambiguities in his equations 
an be resolved after 
areful parsingof his language. The following 
omments on individual paragraphs are meantto help the reader relate Euler's dis
overies to modern treatments of invis
idin
ompressible �uids. This requires us to take advantage of mathemati
al
on
epts developed after his time.Truesdell gives further dis
ussion, extensive and illuminating, in his massive
ommentaries for the various parts of Euleri Opera Omnia XII.Paragraph 17: At this stage, using the determinant formula for the area ofa triangle as it appears in high-s
hool texts would immediately give the areaas
1

2
·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 1

dx + Ldxdt Mdxdt 1

ldydt dy + mdydt 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣whi
h = 1

2
dxdy + 1

2
(L + m)dxdydt + 1

2
(Lm − lM)dxdydtdt and we 
an then
on
lude that 0 = L+m = ∂u/∂x+ ∂v/∂y. Euler is showing how to get thisdeterminantal formula.Paragraph 47: The solution given by Euler says that the 
url of velo
ity iszero: the �ow is irrotational. The 
ondition that udx + vdy be a 
ompletedi�erential= dΦ, for some potential fun
tion Φ, 
ombined with the 
ontinuityequation, implies that the potential fun
tion Φ is harmoni
.62



How did Euler sneak in the assumption of irrotational �ow? Note that the
ontinuity equation gives L + m = 0. The rest of the partial di�erentialequation says that the material derivative of l − M vanishes:
d

dt

(

∂u

∂y
− ∂v

∂x

)

=
d

dt
ξ = 0,

ξ being the vorti
ity. Euler then adopts ξ = 0 as the solution, thus singlingout irrotational �ow. Of 
ourse there are other solutions. What Euler hasdone is to show rigorously that irrotaional �ow is a valid solution. The wholeargument glows with the ex
itement of dis
overy of a method.Paragraph 60: The quantities l − M, λ − N, µ − n are the 
omponentsof vorti
ity ξ = ∇×U, ex
ept for order and sign. In modern ve
tor notation,we would write the equations as
Dξ

Dt
− ξ · ∇U + [∇ · U]ξ = 0,where D/Dt is the material derivative. Euler's solution says that the 
ompo-nents of the vorti
ity are all zero, i.e., the �ow is irrotational. There are of
ourse other solutions, just as there were in the planar 
ase of paragraph 47.Euler did 
ome to understand that the irrotational 
ase was only a spe
ialsolution of the general problem. He had given it up by the time of his dida
ti
treatise [E396℄ �Se
tio Se
unda de Prin
ipiis Motus Fluidorum� [Novi 
om-mentarii a
ademiae s
ientiarum Petropolitanae 14 (1769, published 1770)℄.63



Consider now an in
ompressible �uid. If we let S be the symmetri
 part of
∇U, i.e.

S =
1

2

{

[∇U] + [∇U]T
}

,then ξ ·∇U = Sξ. Furthermore, the tra
e of S is 0. Thus, for an in
ompress-ible �uid, the vorti
ity equation be
omes
Dξ

Dt
= Sξ,where the symmetri
 matrix S has at least one positive eigenvalue. Thisraises issues about the stability of the solution. These issues are amelioratedsomewhat by the fa
t that in planar motion the eigenve
tor 
orresponding tothe most negative eigenvalue is parallel to vorti
ity. In many other 
ases thelargest positive eigenvalue 
an still be expe
ted to have little e�e
t. It maybe that the supreme virtuoso of analyti
 manipulation had gone far enoughto satisfy himself that the obvious solution l −M = λ −N = µ− n = 0 wasat least reasonable.Paragraph 70: In the 
ondition in rule III: A + B + C = 0, the three 
om-ponents are the AA, BB, CC of paragraph 69. The A, B, C... of this
urrent paragraph are now real numbers.For the general solution of Lapla
e's equation following Euler's line of reason-ing, see se
tion 18.3 in Whittaker and Watson's Course of Modern Analysis.Paragraphs 75-77: As Truesdell remarks, Euler fails to a

ount here for all64



se
ond order terms and so misleads himself into �proving� that there 
an beno rotational �uid motion 
oin
iding with the motion of a solid body. Indeed,there is a 
ertain sloppiness in the passage. But mistakes by the residents ofOlympus help us mortals understand how they think.Paragraph 80: The aim of this paragraph is to establish an a

leration po-tential T whose spatial derivatives are the �motive for
es� written out inparagraph 78.Paragraph 81: For a well-de�ned pressure, the expression
p = C +

∫

(Qdx + qdy + Φdz) − Tneeds to be a fun
tion of position independent of the path of the integral,and so Qdx + qdy + Φdz must be a 
omplete di�erential. Euler has thusestablished the ne
essity, at least lo
ally. He �nishes the senten
e howeverwith �alioquin status aequilibrii, vel saltem possibilis, non daretur � � �other-wise, a state of equilibrium, or at least a possible one, would not be given.�He seems to say that any for
e �eld under 
onsideration must be 
ompatiblewith some possible equilibrium state. He may have d'Alembert's prin
iple inmind. That prin
iple, however, applies lo
ally, and Euler is seeking a global
ondition. Truesdell points out that there are winding number issues thatneed a more 
areful analysis for resolution.Paragraphs 88-90: this �nal se
tion is breath-taking.65


