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Principles of the Motion of Fluids

Part One

1. Fluid bodies differ from solids principally in that in general their particles
are not bound to each other, so these different particles can be subject to
very different motions. A motion which is imparted to one fluid particle is
not so determined by the motion of other particles that it could not proceed
in its own way. For solid bodies it is quite a different situation; if they were
inflexible, their figures would undergo no change, and the individual parts
would keep at a constant distance from each other; so that the motion of all
parts would be known, once that of two or three points were given. Even
then, the motions of these two or three points are not completely arbitrary,

since they must keep the same distance from each other.

2. If the solid bodies were flexible, however, the motion of individual par-

ticles is less fixed; because of flexure, the distance or the relative location



of diverse particles is subject to change. Even then, the manner of bending
obeys a certain rule, which diverse particles of bodies of this type must follow
in their motion, to wit that the parts that are subject to the bending will
not tear apart, or pierce each other; which indeed will be ruled out for all

such bodies by a common character of impenetrability.

3. |[Fluids have an infinitely large number of conceivable flows.] In fluid bodies,
however, whose particles are not joined to each other by any bond, the motion
of diverse particles are much less restricted, and from the motion of a number
of particles the motion of the others cannot be determined. For if the motion
of even a hundred particles were known, it is clear that the motion which
the remaining particles could take is infinitely variable. From this it can
be concluded that the motion of each particle of the fluid clearly does not
depend on the the motion of others, unless it were bound with them in such

a way that it must follow with them.

4. At the same time, it cannot be that the motion of all the particles of the
fluid is bound in no way by any law; nor can any conceivable motion of a
single particle be allowed. For since the particles are impenetrable, it is clear
that no motion can take place where some particles go through others, or
that they penetrate each other. An infinite number of such motions should
be excluded, and only the remaining are to be considered, and clearly the

task is to determine by which property these remaining possibilities can be



distinguished from the others.

5. [Circumscribe the types of kinematic flows to be considered, from which one can be
picked out by dynamics.| Before we can fix on the appropriate motion when a
fluid is acted on by a force, we must delimit those motions which could take
place in this fluid. I shall call them possible motions, to distinguish them
from those impossible motions which could not take place. To this end we
must decide the character appropriate to the possible motions, separating
them from the impossible ones; when this is done we need to determine in
any situation which one of the possible motions actually should be chosen.
At that point we must look at the forces to which the fluid is subjected,
and then the motion compatible with these forces can be determined by the

principles of mechanics.

6. [Restriction to incompressible fluids.] I have decided therefore to look at the
character of motions that are possible for a fluid that cannot be penetrated. I
shall posit moreover that the fluid cannot be compressed into a smaller space,
and its continuity cannot be interrupted. I stipulate without qualification
that, in the course of the motion within the fluid, no empty space is left
by the fluid, but it always maintains continuity in this motion. After we
have theory suitable for fluids of this nature, it will not be difficult to extend
it further to fluids whose density is variable, and which do not necessarily

require continuity.



7. If we consider any portion of a fluid of this type, the motion by which
its individual particles are moved should be so constructed that at each time
they fill the same amount of space. If this happens for individual particles,
the portion as a whole is prevented from expanding into a greater amount
of space, or being compressed into a smaller space; and it is just motion of
this type, in which the fluid is considered incapable of either expansion or
compression, that we shall take as possible motions. What we have said here
about an arbitrary portion of fluid, is to be understood as applying to each
element of the fluid, so that the volume of each element of the fluid ought to

remain unchanged.

8. With this condition satisfied, we are to consider what the motion will be
at the individual points of the fluid. For an arbitrary element of the fluid,
we have to find out the instantaneous translation of its bounding surfaces, so
as to determine the new portion of space in which it will be contained after
a very small time period. The new portion of space must be equal in size to
the old portion which the element had occupied. This equating of size will
fully characterize what can be said about the motion. For if the individual
elements occupy equal spaces at each time, no compression or expansion will
arise in the fluid; so the motion will be compatible with our condition, and

we must allow it as a possible motion.



9. |Resolution into two or three directions.| When we take into account not only
the speed but also the direction of the motion at each point of the fluid, it
becomes useful to resolve that motion into fixed directions. This can be done
into two or three directions, the first if the motion of individual points remain
planar; otherwise the motion should be resolved along three fixed axes. Since
this latter case is more difficult than the former, it is convenient to start with
the possible motions in the first case, and when that is worked through we

can more easily solve the latter case.

10. [Two-dimensional flow.] Therefore I shall attribute to the fluid flow two
such directions, so that the individual particles and their motions lie in their

plane.
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Let this plane be represented by the plane of Figure 1!, and consider any
point [ of the fluid, whose location is referred to the orthogonal coordinates
AL = x and Ll = y. Its motion when resolved along the same two directions

displays a velocity along AL, namely Im = u, and along the other axis AB,

namely In = v: thus the actual speed of this point is = \/uu + vv [= Vu2 + v2
|, and its direction will be at an angle inclined to the axis AL, whose tangent

is = v/u.

11. Since we are proposing to develop the state of the motion that applies
to each individual point, the velocities u and v depend only on the location
of the point [, and they are to viewed as functions of the coordinates = and

y. We can therefore write a differential relation

du = Ldx + ldy,
dv = Mdx+ mdy,

and since these are to be complete differentials we must have? dL/dy = dl/dx
and dM/dy = dm/dz . It is to be noted in an expression like dL/dy that
the differential dL of L is to be taken only from the variability of y, and in
a similar way in the expression dl/dx the differential di is such that would

arise if only x were to vary.

!The Appendix gives the complete set of graphics.
2Euler does not use the partial derivative notation 9/9z.



12. |Meaning of differentials.| Care should be taken that in “fractions” of the
type dL/dy, dl/dx, dM/dy, dm/dx the numerators dL, dl, dM, dm not
be thought to denote complete differentials of the functions L, I, M, m; rather
they always denote how much of those differentials will arise from variability
of just that coordinate (and that only) that appears in the denominator, so
that the expressions always represent finite and determinate quantities. A
similar meaning is to be understood for L = du/dz, | = du/dy, M = dv/dx,
m = dv/dy; this notation was first used by the illustrious FONTAINE who has
furnished us with such a worthy compendium of calculus, and I shall adhere

to it also.

13. Thus, since we have du = Ldx+ldy and dv = Mdx+mdy, we may also
infer the two velocities at any other point an infinitely small distance from
the point /; for if such a point is at a distance from [ along the axis AL = dz,
and along the axis AB = dy, then the velocity of this point along the axis
AL will be = u+ Ldx + ldy; and the velocity along the other axis AB will be
= v+ Mdx +mdy. Therefore in an infinitely small time interval d¢ this point
is moved in the direction of axis AL by the amount = dt(u+ Ldx + ldy) and

in the direction of the other axis AB by the amount = dt(v + mdx + mdy).

14. Having noted this, let us consider a triangular element of water [mn,
and we seek the location to which it is transferred, by the motion intrinsic to

that element. Let the side Im of this triangular element be parallel to the axis



AL, the side In parallel to the axis AB; and take Im = dx and In = dy; so
that the point m has coordinates x+dx and y, and point n has coordinates x
and y+dy. It is clear that the differentials dz and dy could be either positive
or negative, since we have not fixed them; and also that the whole mass of
the fluid can be mentally divided up into elements like this, so that what we

prescribed for one will apply equally well to all.

15. To make clear how the element Imn is transferred in the small time
interval df by its intrinsic motion, we seek the points p, ¢ and r, into which
its angles |vertices| I, m and n are transferred in the time dt. Since we shall

have velocities

point: [ m n

along AL | v | u+Ldz | u+ldy

along AB | v | v+Mdx | v+mdy

point [ will come to p, that is:

AP — AL = udt,
Pp— Ll = wdt.

Point m will come to ¢, that is:

AQ — AM = (u+ Ldz)dt,
Qq—Mm = (v+ Mdx)dt.



But point p will be brought to r, that is:

AR — AL = (u+ldy)dt,
Rr—ILn = (v+ mdy)dt.

16. Since points [, m and n are brought to points p, ¢ and r in the small
time interval df, the triangle [mn is to be thought as going to the location
indicated by triangle pgr, joined by the line segments pg, pr and ¢r. Since
the triangle Imn was set to be infinitely small, after the translation over the
little time dt it will still retain a triangular figure pgr, that is rectilinear.
Since the element Imn ought not to be extended into a greater area, nor to
be compressed into a smaller one, its motion must be so composed that the

area of triangle pgr equals the area of triangle imn.

17. [Paragraphs 17-20 will establish that 7 - u = 0, without the benefit of the diver-

gence theorem.| But the triangle Imn, if it is a right angle at [, has an area

= %dxdy, and the area of triangle pgr must also be equal to this. To find

that area, we must consider the coordinates of the points p, ¢, r, which are:

p q r

| AP—z+udt | AQ—x+dz+(u+Ldz)dt | AR—z+(u+tldy)dt

y | Pp—y+tuvdt Qq y+(viMdz)dt | Rr—y+dy+(v+mdy)dt

10



Then the area of the triangle pgr is found from the areas of the following

trapezoids, thus?:
Apqr = PprR + Rrq(@) — PpqQ).

Since however these trapezoids have two sides parallel and perpendicular to

the base A(Q), their areas are easily determined.

18. For we have, as in geometry,

1

PprR = §PR(Pp+R7"),
1

RrqQ = iRQ(RTJrQq),

1
PpgQ = 5PQ(Pp+Qq).
Collecting these together, we find:

1 1 1
Apqr = §PQ - Rr — §RQ - Pp — §PR - Qq.

[Euler defines new quantities @, R, ¢, r.]

3See translator’s comment to this paragraph at the end of this document.

11



For the sake of brevity, put

AQ = AP+Q
AR = AP+R

Qq = Pp+yq

Rr = Pp+r

so that

Then Apgr = %Q(PP‘H“) - %(Q—R)Pp— %R(Pp+q) or Apqr = %Qr—%Rq.

19.
But from the coordinate values shown above [paragraph 17|

Q = dx+ Ldxdt; ¢ = 0+ Mdxdt;

R = 0+ldydt; r dy + mdydt.

After substitution, the area of the triangle becomes
1 1 9
Apqr = §dxdy(1 + Ldt)(1 4 mdt) — §Mldxdydt :

or

1
Apqr = 5da;dy(l + Ldt + mdt + Lmdt* — Mldt?)

12



and since this should be equal to the area of triangle lmn, which is

= %dxdy, there results this equation:

Ldt +mdt +Lmdt> — Mldt*> =0,

L+m +Lmdt— Mldt =0.

20. Since the terms Lmdt and MIdt are vanishingly small compared to
finite L and m, we shall have the equation L +m = 0. For this reason, if we
are dealing with a possible motion, the velocities u and v of any point [ must

be such that in their differentials

du = Ldx+ldy,

dv = Mdx+ mdy

we shall have L +m = 0. Since L = du/dx and m = dv/dy, the velocities
v and v, which are conceived as those in point [ in the directions of AL
and AB, should be thought of as functions of the coordinates z and y such
that du/dx + dv/dy = 0, and the criterion of possible motions consists in
the condition du/dz + dv/dy = 0. Iif this condition does not hold, the fluid

motion cannot take place.

21. |Three-dimensional flows.] We must proceed in the same way when the

fluid motion does not resolve into a plane. To investigate the question taken

13



in its widest sense, we shall take the individual particles of the fluid affecting
each other in any sort of motion, with the only proviso being that neither
compression nor expansion occur in any part. We seek to determine from
this what sort of velocities can occur and give a possible motion; or, what
comes to the same thing, we want to exclude from the list of possible motions
those which do not observe these conditions, so that the criterion for possible

motions can be determined.

22. So we shall consider any point A of the fluid, whose location we shall
represent using three orthogonal axes AL, AB, AC. |Figure 2 below.| Let the
three coordinates of the point A parallel to these axes be AL = z, Ll = y and
[A = z; which will be gotten if from the point A a perpendicular Al is dropped
to the plane determined by the two axes AL and AB. From the point [ we
then take the perpendicular [L to the axis AL. In this way the location of
the point A can generally be expressed by three coordinates. This will apply

at all points of the fluid.

14



23. The motion of the point A can be resolved into three directions A\u. Av
and Ao parallel to the axes AL, AB and AC. So let the three directions of
the velocity of the point A be Ay = u, A\v = v, Ao = w ; and since these
velocities can vary with the point A, they can be considered as functions of

the three coordinates x, y and z. Taking differentials, we get the forms:

du = Ldzx+ ldy+ M\dz
dv = Mdx + mdy+ pdz

dw = Ndx +ndy+ vdz

15



and the coefficients L, [, A\, M, m, u, N, n, v will be functions of the coor-

dinates x, y and z.

24. As these differential forms are complete, it follows, in the same way as

the above, that

dL/dy = di/dz;  dL/dz = d\/dz;  di/dz = d\/dy
dM/dy = dm/dx; dM/dz = du/dx; dm/dz = du/dy
dN/dy = dn/dx; dN/dz =dv/dz; dn/dz=dv/dy

each fraction showing how much the variable in the numerator changes for a

given change in the coordinate in the denominator.

25. In an infinitesimal time dt, the point A can move in all three directions:
by the amounts udt in the direction of AL, vdt in the direction of AB, wdt in
the direction of AC. Since however the speed of the point \, which we may

call V, arises from the composition of the motions in the three directions,

which are orthogonal, we shall have V = \/(uu + vv + ww), and the distance

traveled in the time dt will be = V dt.

26. Let us now consider any volume element of the fluid, to see where it
may advance to in an infinitesimal time dt. Since it does not matter what
figure we attribute to it, as long as the whole fluid mass can be divided into

such figures, for ease of calculation let the figure be a rectangular triangular

16



pyramid, ending at the four solid angles® \, p, v, 0 so that the the coordinates

are given by the scheme:

along: | A L v 0

AL z | x+dx T T

AB |y Yy y+dy y

AC z z z z+dz

and since the base of this pyramid is Aurv = lmn = %d:cdy, and the altitude

is Ao = dz, the volume will be = %da:dydz.

27. We shall now investigate where these individual vertices A, u, v, o will
be carried in the infinitesimal time dt. For each of these, we must consider
the three velocities along the three coordinate axes, for these will differ from

the three original velocities u, v, w according to the following scheme.?

Parallel to | A I v 0

AL u | u+ Ldx | u+ldy | u+ Adz

AB v | v+ Mdr | v+mdy | v+ pdz

AC w | w4+ Ndx | w+ndy | w4+ vdz

28. If the points A, p, v, o are carried in the infinitesimal time d¢ to points

m, ¢, p, and o, whose coordinates are given parallel to the three axes, the

4This is a different set of meanings for these symbols.
SRemember that Euler uses A, i, v with two sets of meanings.

17



instantaneous translations along these axes will be: [for A — 7]

[for 11 — ¢

[for v — p |

[f0r0—>0]

AP — AL

Pp— Ll

pr — I\
AQ — AM =
Qq—Mm =
qo —mp =
AR — AL

Rr—1ILn

rp—nv

AS — AL

Ss— Ll

so —lo

18

= udt,
= wdt,

= wdt;

(u+ Ldx)dt,
(v+ Mdx)dt,

(w + Ndx)dt,

(u+ ldy)dt,
(v + mdy)dt,

(w + ndy)dt,

(u+ A\dz)dt,
(v+ pdz)dt,

(w + vdz)dt.



Thus we shall have as coordinates for the four points®: [for 7 |

AP = x4+ udt,
Pp = y+wvdt,

pr = z+ wdt;

[for ¢
AQ = z+dr+ (u+ Ldx)dt,
Qq = y+ (v+ Mdy)dt,
qp = z+ (w+ Ndz)dt;
[for p]

AR = z+ (u+ldy)dt,
Rr = y+dy+ (v+mdy)dt,

rp = z+ (w+ ndy)dt;

[The original had a misprint.|
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[for g ]

AS = x4+ (u+ Mdz)dt,
Ss = y+ (v+ pdz)dt,

so = z+dz+ (w+vdz)dt.

29. When therefore the vertices A, u, v, o of the pyramid are translated

into points 7, ¢, p, o in the infinitesimal time dt, these new points are to de-

termine a triangular pyramid such that the volume of both be equal, namely
1

= sdzdydz. So the task comes down to determining the volume of the pyra-

mid 7T¢po.”

It is clear, however, that this pyramid is what we have left if from the volume
element pgrmppo we take away the element pgrmop , for the latter element is
a prism sitting perpendicularly® on the triangular base pgr, with the upper

oblique section m¢p cut off.

30. In any truncated prism of this type, the element pgrm¢p can be resolved

into three other volumes, which are:

"The following paragraphs up through 36 are devoted to this task. If we allow use of
the determinantal formula for a parallelpiped, then the equation at the end of 35 follows
immediately, which implies that V- u = 0.

8The triangle m¢p differs from pgr only in the z—coordinates.
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I. | pgsmopo

II. | prsmpo

1. | grs¢po

in such a way that we must have
1
gdxdydz = pqrsToo + prsmpc + qrsopo — pqrrep.

When however a prism of this sort sits perpendicularly on its lower base, with
three different altitudes, then its volume is found if the base is multiplied by

the sum of the three altitudes, divided by three.
31. Therefore the volume of these truncated prisms will be:

1
pgsmpo = =pqs(pm + q¢ + so),

3
1

prswpo = gprs(pw +rp+ so),
1

qrsppo = Sqrs(gd+rp+s0),

1
pqrogp = gpqr(m +qp+1p).

Since however pqr = pqs + prs + qrs, the sum of the first three volumes,

minus the last, will be

1 1 1 1 1
édxdydz = —gpﬁ.qrs — gng.prs — grp.pqs + gsa.pqr;

21



or

dxdydz = 2pqr.so — 2pqs.rp — 2prs.qp — 2qrs.pm.

32. It remains to ascertain the bases of these prisms. Before we do this, to

reduce calculations we put’

AQ=AP+Q; Qq=Pp+q q¢=pr+o,

AR=AP+ R; Rr=Pp+r; rp=pr+p,
AS=AP+S; Ss=Pp+s;, so=pn+o

and with these substitutions, the terms containing pm cancel each other, and
we shall have

dxdydz = 2pqr.c — 2pqs.p — 2prs.¢

and the number of bases to be investigated is reduced by one.

33. Now the triangle pgr will be found, if the trapezoid PpqQ is cut out
from the figure Pprq@, or from the combined trapezoids PprR + RrqQ) .

Hence

Apar = S PR(Pp+ Rr) + 3RQ(Rr +Qq) — 5 PQ(Pp + Qa);

9This orrespondd to the abbreviations in paragraph 18.
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but since PR = R, RQ) = () — R, and PQ = (), we shall have

1 1 1 1
Apgr = 5 R(Pp = Qq) + 5Q(Br — Pp) = 5Qr — 5 Rq.
In a similar way we shall have:

Apgs = SPS(Pp-+Ss) + 15Q(Ss +Qa) ~ 5PQ(Pp+ Qa),

Apgs = %S(PerSs)ﬂL%(Q—S)(SSﬂLQQ)—%Q(PP—FQQ)

whence

1 1 1
Apgs = §S(PP —Qq) +Q(Ss — Pp) = 5Qs = 550

Next,

1 1 1
Aprs = iPR(Pp + Rr) + §RS(R7‘ + Ss) — §PS(Pp +Ss),

1 1 1
Aprs = §R(Pp + Rr) + 5(5 — R)(Rr 4+ Ss) — §S(Pp +5s)
whence

1 1 1 1
Aprs = S R(Pp = Ss) + 5 S(Br — Pp) = 55 — o Bs.

34. Substituting in these values, we shall obtain

dxdydz = (Qr — Rq)o + (Sq — Qs)p + (Rs — Sr)¢,

23



so the volume of the pyramid w¢po will be

1 1 1
E(QT — Rg)o + E(SQ —Qs)p+ E(RS — 5r)¢.
From the values recorded in paragraph 28 above,

Q =dr+ Ldxdt q= Mdxdt ¢ = Ndxdt
R =ldydt r =dt+ mdydt p= ndydt

S = Adzdt s = pdzdt 0 =dz+ vdzdt.
35. Since it follows that

Qr —Rq = dedy(1+ Ldt + mdt + LMdt* — MLdt?)
Sq— Qs = dxdz(—pdt — Lpdt® + MXdt?)

Rs — Sr = dydz(—Xdt — mAdt* + ludt?),

therefore we find that the volume of the pyramid m¢po is expressed as

( \

+Ldt +Lmdt*> +Lmvdt?
+mdt —MIldt>? —Mlvdt?
1 +vdt  +Lvdt?  —Lnudt?
gdxdydz 1+

+mudt?  +MnAdt?

—nudt?  —Nmdt?

—NMAdt?*  +Nlpdt?
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which should be held equal to the volume of the pyramid Auvo = %da:dydz .

After dividing by dt, there results the equation

0= L+m+v +dt(Lm+ Lv+mv— Ml — NX—npu)

+dt*(Lmy + MnX + Nl — Lnyg — My — Nlp).

36. Disregarding the infinitely small terms, we have the equation L + m +
v = 0, in which we have ascertained the condition on the velocities u, v, w
to admit the fluid motion as possible. Since L = du/dx, m = dv/dy and v =
dw/dz, the condition for a possible motion, when any point with coordinate

values z, y, z has corresponding velocities u, v, w, will therefore be:

du dv dw

—+ —+ =
de dy dz
By this condition!® no part of the fluid will pass into a greater or smaller
space, and the continuity of the fluid (and also the density) will be maintained

without interruption.

37. This property of the fluid, however, is to be interpreted to hold for
all parts of the fluid at each moment in time: that is, at each moment the
three velocities u, v, w for all points ought to be such functions of the three
coordinates z, y and z, that du/dx + dv/dy + dw/dz = 0 will hold, and this

character of those functions limits any proposed motion of the individual

10Fuler has actually proved that this is a necessary condition.
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points of the fluid. At any other time, however, the motion of those points
could be quite different, restricted only by the requirement that the above
property still take place. Of course, the same behavior up to the present is

assumed.

38. If however we wish to think of time also as variable, so that the motion
of a point after an elapsed time t is to be defined, when the position A is
given by the coordinates AL = x, Ll = y, and I\ = !, it is clear that the
three velocities u, v, w depend not only on the coordinates z, y and z, but
also on the time t, so that they are functions of these four quantities z, y, z

and t, so that'?

du =Ldz + ldy + \dz + Ldt,
dv =Mdx + mdy + pdz + Mdt,

dw =Ndx + ndy + vdz + Ndt.

Meanwhile however, we shall always have L +m 4+ v = 0, because at any
instant the time ¢ is to be taken as constant, so that dt = 0. Thus it is

necessary, however the functions u, v, w may change with time, that at each

1A L, I, )\ represent points is space, while the L, I and Abelow represent differential
coefficients.

2] have substituted calligraphic for German letters in this translation. It is too difficult
for non-Germans to distinguish between the German N and R.
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moment there holds the condition

du n dv n dw 0
de dy dz
Since this condition assures that any portion of the fluid will be carried in
the infinitesimal time dt into an equal volume, and also likewise under the
same condition in the following element of time, it follows that this must

happen in all following elements of time.

Part Two

39. |[Dynamics.] From those possible motions, which have satisfied the above
condition, we shall now investigate the nature of that motion which actually
can be sustained in the fluid. That is, besides the continuity of the fluid, and
its density being constant, account must be taken here of the forces affecting
the movement of individual elements of the fluid. For whatever the motion
of each element, if it is not uniform or not pointed in a [common| direction
the change of motion ought to conform to the forces applied to this element.
No matter how the change of motion is determined by these given forces, the
above formulas must still be a constraint on this change of motion, so new
conditions must be found, by which any hitherto possible motion is restricted

to the actual motion.
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40. |Planar motion.| Let us also set up this investigation in two parts; and,
first, we shall think of all the motion of the fluid as taking place in the
same plane” Therefore let the position coordinates of any point [ be defined
as before as AL = x, LI = y; and now in the elapsed time ¢ let the two
velocities of [ in directions parallel to the axes AL and AB be u and v;
because we now have to take account the change in time, u and v will be

functions of z_, y and t, so that'?

du =Ldx + ldy + Ldt,

dv =Mdx + mdy + Mdt;

and on account of the condition that we found above we must have L +m = 0.

41. In the infinitesimal elapsed time dt, let therefore the point [ be brought
to p, with a displacement = udt in the direction of the axis AL and with
a displacement = wdt in the direction of the other axis AB; to obtain the
increase in the velocities u and v of the point [ which occur in the infinitesimal
time dt, the distance dx ought to be written udt and the distance dy as vdt,

so that

du =Ludt 4 lvdt + Ldt,

dv =Mudt + moudt + Mdt,

13In modern notation, L = dudt, and M = dv/0t.
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1

from which the accelerative forces'* needed to produce these accelerations in

the corresponding directions will be:

along AL: 2(Lu+1lv+ L)

along AB: 2(Mu+ mv+ M)

and the forces acting on the particle of water [ should be equal to these

expressions.

42. Among the forces that act on the particles of water, we have to give
first consideration to gravity. Its effect will be null, if the plane of motion is
horizontal. If however the plane of motion is at an incline, in the direction of
the axis AL, the horizontal axis being A B, the accelerative force due to gravity
will take a constant value « in the direction of AL. Moreover, we ought not to
neglect friction, because the motion is often there-by appreciably impeded.
Although the laws governing friction are not yet satisfactorily established,
never-the-less we shall perhaps not err too much from the mark if , in analogy
with the friction of solid bodies, we set the friction to be proportional to the

pressure of the particles of water acting on each other.

"4 Euler defines the measure of force as the acceleration needed to move a unit mass a unit
distance in the direction of the force, in a unit time. Since our notion of acceleration will
give one-half of a unit distance, Euler’s measure of force will require twice our acceleration.
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43. As the first step then, we must compute the pressure with which the
particles of water are acting on each other. For a particle pressed all around
by adjacent particles, to the extent that the pressure in some direction is not
balanced, just so much will the motion of the particle be affected. ' That is
to say, the water at each point is subject to a certain state of compression,
which will be like what occurs in still water at a certain depth. It is convenient
to use this depth, at which still water is found to be in the same state of
compression, as an expression for the pressure at any point [ of the water.
Therefore, if p is that still-water depth that expresses the pressure at point
[, then p will be a certain function of the coordinates 2 and y, and if the the

pressure at [ also varies with time, p will also be a function of time t.

44. Therefore we shall put dp = Rdx 4 rdy + Rdt, and we shall consider a
rectangular element of water Imno |Fig. 3|, whose sides are Im = no = dx

and (n = mo = dy; the area being = dxdy.

15Euler is considering a material particle extending in each direction.
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If now the pressure at [ is = p, the pressure at m will be = p + Rdx, at n
= p+rdy and at o will be = p 4+ Rdx 4 rdy. Then the side Im is pressed by
a force = dx(p+ %Rdm). while the opposite side no will be pressed by a force
=dz(p+ %Rdm +rdy). From these two forces, the element Imno will be have
a resulting force in the direction of In that is = —rdzdy. In the same way,
from the forces dy(p + 3rdy) and dy(p + Rdx + 5rdy) which act on the sides
In and mo, the resulting force acting on the element in the direction lm will

be = —Rdzdy.

45. Hence there arises an accelerative force in the direction of Im that is
= —R, and an accelerative force in the direction of [n that is = —r. The
first of these along with the force due to gravity will then be o — R. Absent

friction, we shall have the equations o« — R = 2Lu + 2lv + 2L or
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R=a—2Lu—2lv-2L,

and —r = 2Mu + 2mv + 2M or

r=—2Mu —2mv — 2M

which together give us

dp = adr — 2(Lu + lv + L)dx — 2(Mu + mv + M)dy + Rdt.

This differential should be complete, that is, integrable.

46. Since the term adx is already integrable, and as of yet we know nothing
of Rdt, by the very nature of complete differentials it is necessary for the

above expression that

d(Lu+Ilv+ L) d(Mu+mv+ M)

dy dx

and thence, because du/dx = L, du/dy =, dv/dx = M, and dv/dy = m,

udL vdl  dL udM vdm  dM
L+ —+1 — +— =ML M4 —+ —
+ 0y +Iim + dy +dy + I +mi + 0 + I
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which reduces to this formula:

dL  dM i dm ac dM
L M a4 @ _dny & 47
(L+m)(l )+u(dy dx)+v<dy dx)+dy T 0

47. Since Ldx+ldy+Ldt and Mdx+mdy-+Mdt are complete differentials'®,

we know that

@ dm M e
dy dx’ dxr dy’ dy dt

g M
de — dt’

and when these expressions are substituted, we shall have the equation:'”

0

(L+m)(l—M)+u<M) +U(dl—dM) Ldi—dM

dx dy dt

which clearly will be satisfied by [ = M : that is, by du/dy = dv/dx. This
latter condition requires in turn that udx 4+ vdy be a complete differential,

and this latter is the desired condition describing those motions that are to

be allowed.'®

48. This criterion is independent of the previous one of continuity and
uniform density. For this property that udx 4+ vdy be a complete differential
would still apply, even if the moving fluid were to change its density, as in

the motion of elastic fluids, or as happens in air. That is, the velocities u

16— du and dv respectively.
17T have corrected some obvious misprints on this page.
18Gee translator’s comment to this paragraph.
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and v would be such functions of the coordinates z and y that at any fixed

time ¢ the expression udx + vdy would be completely integrable.

49. We are now in a position to define the pressure p, which we need to
determine completely the motion of the fluid. Since we have found that

M =1, we shall have'?

dp = adz — 2u(Ldzx + ldy) — 2v(ldx + mdy) — 2Ldx — 2Mdy + Rdt.

From Ldx + ldy = du — Ldt and ldx + mdy = dv — Mdt,

dp = adx — 2udu — 2vdv + 2Ludt + 2Muvdt — 2Ldx — 2Mdy + Rdt.

If we wish to define the pressure at each location for a given fixed time?°, the

equation to be considered is:

dp = adr — 2udu — 2vdv — 2Ldx — 2 Mdy

and, on writing £ = du/dt and M = dv/dt, we then get

du dv
dp = adx — 2udu — 2vdv — QECZZL’ — QEdy.

19 Actually, the argument in the next two lines does not depend on M = 1.
20That is, to get the spatial gradient of pressure.
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In integrating this equation, the time ¢ is to be held constant.

50.  Given the hypotheses, |we shall see that| this equation is integrable, if
we take into account the criterion that udx + vdy be a complete differential,
keeping the time ¢ constant. Let S be its integral, which is a function of z, y
and ¢, which gives dS = udx + vdy when dt = 0. If we further allow ¢ to be

variable, this becomes

dS = udx + vdy + Udt.

Then we shall have du/dt = dU/dx and dv/dt = dU/dy. Then U = d.S/dkt.

51. Introducing these expressions gives us:

du dv aUu dU

whose integral for a fixed time ¢ is clearly = U. To make this more clearly

apparent, let us put dU = Kdzx + kdy, so dU/dx = K and dU/dy = k. Then

d d
—Udcc + —Udy = Kdx + kdy = dU.
dx dy

The integral of this equation being = U = dS/dt, then

dp = adx — 2udu — 2vdv — 2dU
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which upon integration yields:

ds
p = Const. + axr — uu — vv — QE,

S being a function of z, y and t. For dt = 0, its differential is udx + vdy.

52. To understand better the nature of this formula, we shall consider the
speed at a point [, which will be =V = /(uu + vv). The pressure moreover
will be: p = Const. + ax — uu — vv — 2dS/dt. The S in the last term dS

denotes S = [(udx + vdy), where we view the time ¢ as variable.

53. Suppose we now wished to include a friction term that is proportional
to the pressure p in effect while the point [ traverses an infinitesimal distance
ds. The retarding force arising from the friction would then be = p/ f. Putting

dS/dt = U, our differential equation at a definite point ¢ in time becomes:

dp = adz — ?ds —2VdV — 2dU.

Let e be the number whose hyperbolic logarithm is = 1. Integration then
gives?!

p=e/ / e (adx — 2VdV — 2dU)

21The orginal has dV instead of dU.
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or

1
p=ax—VV —-2U — ?e_s/f/es/f(om: —VV —2U)ds.

54. For the fluid motion that is actually to be sustained, the criterion
is that udzr + vdy be a complete differential at any fixed time ¢?2. The
continuity condition requires that the density stay constant and uniform so
that du/dz + dv/dy will be = 0, whence it follows that —udy + vdz is a
complete differential?®. Thus the velocity components « and v together must
be functions of z, y and ¢ such that both the expressions udx + vdy and

—udy + vdx are complete differentials.

55.  [Flows in three dimensions.] Let us now start to investigate the case where
the three velocity components u, v, w of the point A, directed along the axes
AL, AB, AC, are functions of the coordinates z, y, z, and of the time ¢,

such that
du = Ldz+ldy+ Mz + Ldt

dv = Mdx+ mdy + pdz + Mdt
dw = Ndz + ndy + vdz + Ndt;

and, according the the condition given earlier, we must have L +m +v =0

even if the time ¢ is allowed to vary. This is the same as

du dv dw

%—Fd—yﬁ-g—

22Gee the translator’s comment for paragraph 47.
23This expression lacks the minus sign both times it appears in this paragraph.
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This condition will not be used in the present part of our analysis.?!

56.  After an infinitesimal time dt, the point X is brought to position 7. It
traverses a distance = udt in the direction of the axis AL, a distance = vdt
in the direction of AB, and a distance = wdt in the direction of AC. The

three velocity components for the point A at postion 7 will be:

along AL = u+ Ludt + lvdt + \wdt + Ldt,
along AB = v+ Mudt + mvdt + pwdt + Mdt,

along AC = w + Nudt + nvdt + vwdt + Ndt.

Then the accelerations along these same directions will be:

along AL = 2(Lu—+lv+  w+ L),
along AB = 2(Mu+ mv+ pw + M),
along AC = 2(Nu+nv+vw+ N).

57. Let us take the axis AC in the vertical direction, so that the other
two axes AL and AB are horizontal. Along the axis AC, there shall be an
accelerative force = —1 due to gravity. The pressure p of point A will have a
differential

dp = Rdx + rdy + pdz,

24The condition will be re-introduced in paragraph 64.
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if time is held constant. There arise from this the three accelerations
AL:—R, AB:—r, AC: —p.

These various equations are combined in the same way that we used in para-

graphs 44 and 45, and we need not repeat the argument here. The result

will be the equations:

R= —2(Lu+ v+ w + L),
r= —2(Mu + mv + pw + M),

p= -1 =2(Nu+nv+vw+N).

58. Since however the form dp = Rdx + rdy + pdz must represent a

complete differential, we shall have

dR/dy = dr/dz; dR/dz = dp/dx; dr/dz=dp/dy.

After differentiation and dividing by -2, we shall obtain the three equations?

ulLy +vl, +wA, + L, +LI +Im + An
ubM, +vmy +wp, + My +ML +mM + N,

25To increase legibility in these two paragraphs, I follow the more modern practice
indicating partial derivatives by subscripts. In modern terms, Euler has taken the curl
to eliminate the pressure gradient. The dependent variables in the resulting differential

equations in paragraph 59 become the vorticity components.

39



- ul, +vl, + w\, + L, +LA+lp+ v =
ulN, +vn, +wv, + N, +NL+nM +vN,
(
o ub, +vm, +wp, + M, +MAX+mp+pr =
uNy +vn, +wvy + N, +Nl+nm+vn.
\

59. By the property of complete differentials,?®

=l my=»M,; M=l p,=M; L,=1; M;=DM,

)\:c; lz = )\y; Ng = Ny; Vy = Nz; *Cz = )\t; N:c = Nta

L,
L,
M, = py; Ny=mng m,=p,; vy=n; M,=p; Ny = ny.

Substitute these in the above three equations, which then become

dl —dM dl —dM dl —dM dl —dM

d\ —dN d\ — dN d\ — dN d\ — dN
L)t [ ) [ ) +w [ Z— )+ (A= N) (L +v)+Hpu—nM =0,
dt dx dy dz

dp — dn dp — dn dp — dn dp — dn B
( o )—i—u( o )+v( 0 )+w< 7 +(u—n) (m+v)+MA—=NI = 0.

26Each line of equalities is used in the corresponding equation of the previous paragraph.
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60. It is clear that these three equations are satisfied on setting:?’

l=M; AN=N,; p=N,

and therein lies the condition as derived from our analysis of applied forces.?

These can be expressed in our usual notation as

du _dv. du _ dw. dv _ dw
dy =~ dx’ dz ~ dx’ dz  dy-

These, however, are the very conditions required for the form udx + vdy +
wdz to be a complete differential. This condition then states that the three
velocity components ¢, u, w be functionsof g, y, z alongwith {, such

that at any fixed time the form udzr + vdy + wdz admit an integral.

61. For a fixed moment in time (i.e., dt = 0), then, we have

du =Ldx + Mdy + Ndz
dv =Mdzx + mdy + ndz

dw =Ndx + ndy + vdz

27See translator’s comment for this paragraph.
28 quibus continetur criterium, quod consideratio sollicitationum suppeditat.
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and the values for R r p will be:

R= —2(Lu+ Mv+ Nw+ L),
r= —2(Mu + mv + nw + M),
p= -1 =2(Nu+nv+vw+N).

We shall have this equation for the pressure:

dp= —dz —2u(Ldx+ Mdy+ Ndz)
—2v(Mdz 4+ mdy + ndz)
—2w(Ndz + ndy + vdz)
—2Ldx — 2Mdy — 2N dz

= dz — 2udu — 2vdv — 2wdw — 2Ldx — 2Mdy — 2N dz.
62. Since [ — du/dt; M =dv/dt; N = dw/dt, integration gives

du dv dw
p—C—z—uu—vv—ww—Q/(dejL%dy—i-%dz).

By the condition found above, udz + vdy + wdz will be integrable, and we

can take this integral to be = S. A variable time ¢ can now be allowed, and

we can take

dS = udzr + vdy + wdz + Udt,
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with  qu/dt = dU/dx; dv/dt = dU/dy; dw/dt = dU/dz. ** Consequently,

for that point in time assumed in the above integral,

aUu au au
%da: + d—ydy + Edz =dU

and we shall have

p=C—2z—uu—ovv—ww—2U,

or?

dS
=C—z— - - —2—.
p z uu (X ww "

63. The form uu + vv + ww is seen to express the square of the speed V'

at the point A, so the equation for the pressure becomes

as
=C—-2z-VV -2—.
b : dt
To evaluate this, first we must seek the integral S of the form udz+vdy+wdz.
Its differential with only the time ¢ being variable will be divided by dt, which

will give the value of dS/dt, which then goes into the expression we found

for the pressure.

2 Also, U = 9S/0t.
30The original has dS/ds.
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64. If we now conjoin the earlier criterion which constrains any possible
motion, then the three velocity components u, v, w should be such functions
of the coordinates z, y and z with |fixed?| time ¢, that first udz + vdy + wdz
be a complete differential, and also that du/dx + dv/dy + dw/dz = 0. Any
motion of the fluid must be subject to these conditions, if the density is
taken not to vary. Moreover, if the form udx +vdy +wdz + Udt is a complete
differential with variable time ¢, then the state of the pressure at any point

A is expressed in terms of a depth p with

p=C—2z—uu—vv—ww—2U.

This holds when the fluid experiences gravity in the z-direction, the plane

BAL being horizontal.

65.  |More general case.] Suppose we assign a different direction for gravity,
or we allow any variable forces to act on individual particles of the fluid,
so that a difference in the value of the pressure p would now enter. There
would still be no change in the law governing the velocity components of
each point of the fluid. The three velocity components must always be so
constituted such that udx + vdy + wdz be a complete differential, and such
that du/dx+ dv/dy+ dw/dz = 0. The three velocity components u, v, w can
be set up in an infinite number of ways to satisfy these two conditions ; and

then the fluid pressure can be assigned at each point.
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66. It will be much more difficult, however, to determine the motion of the
fluid at each point when variable applied forces and pressure are assigned.
For in these cases we need to find various equations of the form p = C' —
z — uu — vv — ww — 2U. The functions u, v, w have to be defined to satisfy
not only such equations, but also the previously specified laws. This will
require the utmost analytical skill. The sensible approach is to inquire into

the nature of suitable functions which would conform to each criterion.

67. The best place to start is with the integral whose differential is udx +
vdy + wdz when time is held fixed. Let S be this integral, which will be a
function of z, y, and 2, for fixed but arbitrary time ¢. If the quantity S is
differentiated, the coefficients of the differentials dz, dy, dz will provide the
velocity components u, v, w which obtain at the current time at the fluid
point whose coordinates are z, y and 2. The question now comes down to
this: to define what functions of z, y and z may be allowed for S so that we
also have du/dx + dv/dy + dw/dz = 0. Since u = dS/dz, v = dS/dy, and

w = dS/dz, this means that

ddsS N ddsS N ddS 0
dz?  dy?  dz?
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68.  [Special solutions.| Since it is not obvious how in general this can be

made to happen, I shall consider certain classes of possibilities. Let then

S = (Ax + By + Cz)".

Then dS/dx = nA(Az+ By+C2)"! and ddS/dz* = n(n—1)AA(Ax+ By +
Cz)"2, and similar forms will hold for ddS/dy* and ddS/dz*. From this it

must be that

n(n —1)(Az + By + C2)" ?(AA+ BB + CC) = 0.

This will be satisfied in the first case when either n = 0 or n = 1. From these
will obtain two suitable solutions, namely S — constant and S = Az + By +

C'z, where the constants A, B, C and the time can be chosen arbitrarily.

69. If however n is neither 0 nor 1, then we necessarily have*' AA+ BB+

CC = 0. A suitable solution for § will now be

S = (Ax + By + Cz)"

in which the order n can be any number, but the time ¢ can enter into this

order n. It is clear that any combination of such forms can be taken for the

31Evidently we are now considering complex numbers.
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solution S, so that:

S =a+fz+yy+0z+e(Ax+ By + Cz)" + ((A'z + By + C'2)""

1"

‘|‘77(A”113' + B”y + C//Z)n’” +9(A”/£L' + B”’y+ C///Z)n etc.

as long as
AA+ BB+ CC =0;
A'A'+ B'B'+C'C' = 0;
A"A" + B"B" + C"C" = 0 etc
70.  Suitable formulas for S for the smaller orders, where the coordinates

X, y, z are raised to the first, second, third or fourth powers, will be the

following:?

I. S= A,
I. §= Ax + By + Cx,
1. s = Axx + Byy + Czz + 2Dxy + 2Exz + 2Fyz
(A+B+C=0),

IV. S= Az®+ By + 02+ 3Dxay + 3Fzxz + 3Hyyz + 6 Kzyz
A+E+G=0;, B+D+1=0; C+F+H=0;

32See comment on this paragraph at the end of the document.
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+Az* + 6Dxayy + 4Gy + 4Hxy + 12Nzayz
V. S= +By'+6Fxrzz +4lx3z +4Kxz? + 120xyy2
+By* + 6 FExxzz + 41232 + 4Kx2® + 120zyy2
where A+ D+ FE=0 G+H+P=0,
B+D+F=0 I+K+0=0,
C+E+F=0 L+M+N=0.

71. We can now see how to get the like formulas for any order. First,
the same numerical coefficients are given in the individual terms as occur in
the law of permutation of quantities — that is, which arise if the trinomial
x+y+z is raised to that order power. Next, indefinite literals A, B, C, etc. are
multiplied into these numerical coefficients. Then, without regard to these
literals, check wherever there occur three terms of the type LZxx + M Zyy +
NZzz, which have the same common factor arising from the variables.® As
often as this occurs, specify that the sum L 4+ M + N of the three literals be

set to zero. For example, for the fifth power there will be had

+Az® + 5Daty + 5Datz + 10Gx3yy + 10G2322 + 20K 23yz + 30N xyy22
S = 4By’ +5Exy* + 5Eytz + 10H 2%y + 10Hy322 + 20Layz + 3002y 22

+C2% + 5Fx2* + 5Fyzt + 10Iwxz3 + 10Zyy2® + 20 M zy2® + 30 Prayyz,

33That is, arising from the permutations of z, y, 2.
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with the following conditions for the literals:

A+G+G=0. D+H+0O=0; D+I+P=0
B+H+H=0, E+G+N=0;, E4IT+P=0;, K+L+M=0
C+I1+IT=0, F+G+N=0; F+H+0=0.

In a similar way, there will be 15 conditions of this type for the sixth order,

21 for the seventh, 28 for the eighth, and so on.

72.  [n=0.] Now in the first formula S = A, the three velocity components
will be zero, since the coordinates z, y and z do not appear at all. This
describes a fluid at rest. The pressure at any point, however, can be variable
with the time. For A is an arbitrary function of time, and so the pressure at
a point A and time ¢ will be p = C'— 2% — z. This formula indicates the state
of a fluid subject to any forces whatsoever at any point in time, so long as
the forces balance each other so that no motion of the fluid will arise. This
will happen for example if the fluid is contained in a vase without a means

of egress, yet subject to any sort of forces.

73.  |n—=1.] For the formula S = Ax + By + Cz, differentiation at the point

A will give three velocity components:
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Thus, at a given time, all points of the fluid will be carried with the same
motion, in the same direction. Then the fluid as a whole will move like a solid
body, carried by a common but changing motion. At a different point in time,
as the applied external forces change, the motion will differ accordingly in
both speed and direction. If, for point A, the functions of time are A, B and

C, then the pressure will be p = C—z—AA—BB—CC—ZE% —Qy%—f—Qz%.M

74.  [n=2.] The third formula S = Azx+ Byy+Czz+2Dxy+2Exz+2Fyz
with A + B + C' = 0 will yield three velocity components at the point \ :
Bu =3Ax + 2Dy + 2Ez; v = 2By + 2Dz + 2Fz; w = 2Cz + 2Ex + 2Fy, or
w = 2Fx + 2Fy — 2(A + B)z. In this case, at any moment in time different
points in the fluid will be carried in different motions. At the next moment in
time, moreover, the motion of each point can be variable in any way, because
the functions for A, B, C, D, E, F can be of any sort. Even more variety can

occur if composite functions are used for S.

75. |Investigating the possibility of a common rotation.| In the second case, the
motion of the fluid will coincide with the uniform motion of a solid body, so
at any moment in time the different parts of the fluid will be carried in an
equal and parallel motion. We might suspect that the motion of the fluid
in other cases can also coincide with the motion of a solid body, whether

rotational or of some other sort. For this to happen, the pyramid m¢po must

34 The original reads: p=C — z — AA — CC — 2242 — 2y4B _ ¢
35The orginal has « instead of u.
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necessarily be equal and similar to the pyramid Auro; that is, taking over

the values shown in paragraph 32,36

7 = u=dr =+/QQ + qq+ OP
mp=M=dy =+RR+rr+pp
mo=Xo=dz =+/SS+ss+ o0

Op=pv = /d? +dy? =/(Q—R)?+(¢—r)?+ (P —p)?
Po=po =+da?+d2 =./(Q—5)2+(¢—3)2+ (P —0)2
po=ro =+/dy2+dz2 =\/(R—9)*+(r—s)?2+(p—o0).

76. On comparison with the three first equations, the three last equations

reduce to these:

QR+ qr+ ®p =0;
QS + gs + bo = 0;

RS +rs+ po=0.

If however we substitute for @, R, S, ¢, r, s, ®, p, o the values assigned in

36 Again, with the same letters doubly used as unrelated labels and distances. See also
the comments to paragraphs 75-77 at the end of this document.
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paragraph 34, then the first three equations |of the previous paragraph| will give:

1=1+2Ldt; 1+ M =0
1=1+2mdt; A+ N =0

1l=1+2vdt; p+n=0

from which we would conclude that L = 0, m = 0, and v = 0, M = —I,

N =—-Xand n = —pu.

77.  The three velocity components at each point A would therefore be so

constituted that?®7

du =+ ldy + \dz
dv = —ldz + pdz

dw = — Adx — udy.

Now the second condition on the fluid motion demands that [ = M, A = N
and n = p. Then these all vanish, and the velocity components u, v and w
will be the same in all parts of the fluid at any given time. It is therefore
clear that the fluid motion cannot coincide with the motion of a rigid body

in this case.

37Some minus signs were missing in the original.
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78. To determine the contribution of the forces which act externally on
the fluid, we ought first to find the force needed to produce any specified
fluid motion. We found in paragraph 56 that these are equal to the three ac-
celerative forces recorded there. If we consider a fluid element whose volume

or mass is = dxdydz, the motive forces required are therefore:*®

AL: = 2dzdydz(Lu+ v+ Aw + L) = 2dxdydz (uu, + vu, + wu, + uy)
AB: = 2dxdydz (Mu+mv + pw + M) = 2dxdydz (wv, + vv, + wo. + vy)

AC:  =2dzdydz (Nu+nv+vw+N) = 2dzdydz (uw, + vw, + ww, + w;)

and triple integration gives the total forces that ought to be applied on the

whole mass of fluid in each direction.

79. According to the second condition the form udzr + vdy + wdz is to
be a complete differential, whose integral is = S. With time also variable,
we are to set dS = udxr + vdy + wdz + Udt. Then, from du/dy = dv/dx;

du/dz = dw/dx; du/dt = dU/dz etc., those three motive forces become:

udu + vdv + wdw + dU
dz ’

38For the sake of legibility, I have resorted to subscripts here, writing for example u, in
du
place of .

AL := 2dxdydz
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AB 2d$dydzudu+vdvc—;wdw+dU’
Yy

udu + vdv + wdw + dU

AC :=2dzdydz
dz

80. Let now uu+vv+ww+2U =T, T being a function of the coordinates

7, y, 229 For a fixed point in time, we can write

dT = Kdx + kdy + rdz

and the three motive forces of the element dxdydz are

AL : = Kdxdydz
AB : = kdxdydz

AC : = kdzdydz.

Upon triple integration, these formulae extend to the whole fluid mass. From

these, we obtain equivalent*!

expressions for forces, and their average direc-
tions, that may be used everywhere. But this involves a truly higher level of

difficulty, and I shall not dwell further on this topic.

39See comments for this and the following paragraph, at the end of the document.
40The typesetter misread &, replacing it with « here and with & further down.
4lEquivalent to the expressions written out in paragraph 78.
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81. This quantity 7" = uu+vv+ww+2U introduced here yields a simpler
formula for the equivalent depth p that gives the pressure; itisp =C—2—T,
as long as each fluid particle is acted upon only by gravity. If however any
particle A\ is subjected to accelerative forces whose components along the
directions AF, AB, and AC are respectively (), ¢ and ®, then a similar

calculation gives the pressure as

p:C+/(de+qdy+(I>dz)—T.

It is clear then that Qdx 4 qdy + ®dz must be a complete differential, to be
compatible with a state of equilibrium. The celebrated Monsieur Clairaut
has indeed shown with great clarity that such a condition must be imposed

on the force components (), ¢ and ®.

82. [Application to hydrostatics and hydraulics.| At first glance the principles
of the general theory of fluid motion did not seem very fruitful, yet almost
everything that is known about hydraulics and hydrostatics is contained in
them, so it must be allowed that these principles have a very broad reach. To
see this more clearly, it will be worth while to show exactly how the known
precepts of hydrostatics and hydraulics follow in a clear and straight-forward

manner from the principles developed so far.
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83.  Let us therefore consider first a fluid at rest, so that v = 0, v = 0 and

w = 0. Since then T" = 2U, the pressure at any fluid particle A\ will be

p:C+/(de+qdy+<I>dz)—2U.

Since U is a function of time ¢, which we take fixed, we can fold this quantity

U into the constant C, so that
po’—l—/(Qdm—irqdy—l—(I)dz),

where (), ¢ and ® are the forces acting on the fluid particle A in the direction

of the axes AL, AB and AC respectively.

84.  Since now?? the pressure p is a function of the position of ), that is,
of the coordinates z, y and z, then the form [ (Qdx + qdy + ®dz) must be
a definite integral function of these coordinates. Then it is clear, using the
same sort of argument as above, that the fluid could not be in equilibrium
unless the forces acting on the individual fluid elements are so constituted
that Qdx + qdy + ®dz be a complete differential. If we set its integral = P,
then the pressure at the point A will be p = C'+ P. If the only force is gravity
acting in the direction of CA, then p = C — z. If the pressure at one point A
is specified, thus giving the constant C) then, for that one moment in time,

the pressure at all other points will be completely determined.

42For a fixed moment in time.
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85.  With the passage of time, the pressure at each position can change.
This will surely happen if the external forces acting on the fluid are variable,
as these are not restricted except that they remain in equilibrium and do not
produce fluid motion. On the other hand, if these forces do not suffer any
change, then the literal C' actually does signify a true constant independent
of time, and in that position A\ the same pressure p = C' 4+ P will always be

found.

86.  |Free surface.| In a permanent state, the fluid’s boundary can be deter-
mined if the boundary is not subjected to any force. In a vessel, on the free
surface®® where the fluid is not confined by walls of the vessel, the pressure
must neccesarily be zero. Then the equation will be P =const., and the
shape of the free surface is thereby expressed as a relation among the three
coordinates z, y and z. At the free surface we may set P = E, C' = —F; and
for any internal point A the pressure will be p = P — E. If the fluid elements
are subject only to gravity, so that p = C'—z, then at the free surface we shall

have z = C| from which we may conclude that the free surface is horizontal.

87. |[Flow through narrow tubes.| Finally, concerning flows through tubes,
everything that has been teased out by various means are easily deduced

from these principles. The tubes are usually taken to be very narrow, or

43In this paragraph, Euler uses the terms “extrema figura”, “extremitas”, “extrema su-
perficies”, and other combinations of these words, not using the same phrase twice. He
lands finally at “extrema superficies libera”. I have translated all these terms with the
modern term “free surface”.
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else the flow is assumed to be uniform across any normal cross-section of the
tube. From these assumptions arose the rule that the speed of the fluid at
any position in the tube is inversely proportional to the area of the cross-
section. So let the shape of the tube be expressed by two equations among
the three coordinates z, y and z; so that for any value of the abscissa z, the
other two coordinates y and z can be defined. Let also A be any point of the

tube.**

88.  Let moreover the area of the cross-section at A be = rr, and at another
fixed position of the tube let the area be = f f, while the speed is = 8,*> which
after an infinitesimal time dt becomes 6 + do. Thus 6 will be a function of
time ¢, as will be do/dt. The velocity of the fluid at point A at the current
time will be V' = ffo/rr. From the shape of the tube, y and z are given
in terms of z, so that dy = ndx and dz = 6dz; whence the three velocity

components at A in the directions of AL, AB and AC are respectively*®:

118 1 '
T At t 00
_ffo n _

rr \/1T+nn+ 06

ffo 0

w =

rr \/1+nn+99;

4 The marginal note refers to Figure 2, whose re-use is a bit of a stretch. Or did Euler
lift this passage from another manuscript which contained additional figures?

45Euler used the astronomical symbol whose teX code is “\taurus”. One is bound to
have strong feelings about using such a symbol. Printing difficulties have forced me to
substitute the makeshift 6. The combination ffo is the mass flux.

46These are the speed V times the direction cosines.
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so that vu + vv + ww = VV = f45/r%. The term rr is a function of z as

well as the dependent variables y and z.

89.  Since udx + vdy + wdz is a complete differential and we can take its

integral to be = S, there results:

ffode (1+nn+00) ff“
dS = = dz/1 00.
rr 1+ nn+ 600 v T

But dz+/1 + nn + 00 represents the element®” of the tube. If we write this
as = ds, then dS = %ﬁds. For a fixed time ¢, this is a function of 6. Since
however s and rr do not depend on the time £, but only on the shape of the

tube, it follows that S =9 [ ffds.

90. To find the pressure p which obtains at the point A in the tube, we
must consider the quantity U arising from differentiating S when only the
time ¢ is variable that is, such that U = dS/dt. Since the integral form [ %
does not involve the time ¢, the differential will be dS/dt = U = % %;

and then, from paragraph 80,

o fies 2do/ffds'
’l"

For any posited forces @, ¢ and ¢ acting on the fluid, the corresponding

4Tarc-length.
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pressure at the point A\ will be:

4vv v
p:C+/(Qda:+qdy+<I>dz)—fOO—QdO/fffs.

rd dt

This is the formula that was to be extracted for fluid motion through a tube.
Since we allowed any sort of forces acting on the fluid [in this derivation|, it will
hold all the more so when the only force is gravity. It is well to recall that the
forces Q, q and ® had to be so constituted that the form Qdx + qdy + ®dz

be a complete differential, i.e., that it be integrable.

Explicit dissertatio de principiis motus fluidorum auctore Leon. Eulero.
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Translator’s comments

I find that Euler’s Latin is in general very precise. Almost all obscurities in his
meaning or ambiguities in his equations can be resolved after careful parsing
of his language. The following comments on individual paragraphs are meant
to help the reader relate Euler’s discoveries to modern treatments of inviscid
incompressible fluids. This requires us to take advantage of mathematical

concepts developed after his time.

Truesdell gives further discussion, extensive and illuminating, in his massive

commentaries for the various parts of Euleri Opera Omnia XII.

Paragraph 17: At this stage, using the determinant formula for the area of
a triangle as it appears in high-school texts would immediately give the area

as
0 0 1

dx + Ldxdt Mdzxdt 1

N —

ldydt dy + mdydt 1

which = Zdxzdy + (L 4+ m)dzdydt + 5(Lm — IM)dzdydtdt and we can then
conclude that 0 = L+ m = du/dx + dv/dy. Euler is showing how to get this

determinantal formula.

Paragraph 47: The solution given by Euler says that the curl of velocity is
zero: the flow is irrotational. The condition that udx + vdy be a complete
differential = d®, for some potential function ®, combined with the continuity

equation, implies that the potential function ® is harmonic.
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How did Euler sneak in the assumption of irrotational flow? Note that the
continuity equation gives L +m = 0. The rest of the partial differential

equation says that the material derivative of [ — M vanishes:
d (Ou Ov\ d_ 0
dt \oy 0Ox) dt>

¢ being the vorticity. Euler then adopts £ = 0 as the solution, thus singling
out irrotational flow. Of course there are other solutions. What Euler has
done is to show rigorously that irrotaional flow is a valid solution. The whole

argument glows with the excitement of discovery of a method.

Paragraph 60: The quantities | — M, A\ — N, p—n are the components
of vorticity £ = V x U, except for order and sign. In modern vector notation,

we would write the equations as

D¢ B
5 & VUV UE=0,

where D/Dt is the material derivative. Euler’s solution says that the compo-
nents of the vorticity are all zero, i.e., the flow is irrotational. There are of
course other solutions, just as there were in the planar case of paragraph 47.
Euler did come to understand that the irrotational case was only a special
solution of the general problem. He had given it up by the time of his didactic
treatise [E396| “Sectio Secunda de Principiis Motus Fluidorum” |Nowvi com-

mentarii academiae scientiarum Petropolitanae 14 (1769, published 1770)].
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Consider now an incompressible fluid. If we let S be the symmetric part of
VU, i.e.
1
S = {[VU] + [VU]T} ,

then £- VU = S¢. Furthermore, the trace of S is 0. Thus, for an incompress-
ible fluid, the vorticity equation becomes

be _

Dt - Sga

where the symmetric matrix S has at least one positive eigenvalue. This
raises issues about the stability of the solution. These issues are ameliorated
somewhat by the fact that in planar motion the eigenvector corresponding to
the most negative eigenvalue is parallel to vorticity. In many other cases the
largest positive eigenvalue can still be expected to have little effect. It may
be that the supreme virtuoso of analytic manipulation had gone far enough
to satisfy himself that the obvious solution [ — M = A — N =y —n =0 was

at least reasonable.

Paragraph 70: In the condition in rule III: A+ B 4+ C' = 0, the three com-
ponents are the AA, BB, CC of paragraph 69. The A, B, C... of this

current paragraph are now real numbers.

For the general solution of Laplace’s equation following Fuler’s line of reason-

ing, see section 18.3 in Whittaker and Watson’s Course of Modern Analysis.
Paragraphs 75-77: As Truesdell remarks, Euler fails to account here for all
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second order terms and so misleads himself into “proving” that there can be
no rotational fluid motion coinciding with the motion of a solid body. Indeed,
there is a certain sloppiness in the passage. But mistakes by the residents of

Olympus help us mortals understand how they think.

Paragraph 80: The aim of this paragraph is to establish an accleration po-
tential 7" whose spatial derivatives are the “motive forces” written out in

paragraph 78.

Paragraph 81: For a well-defined pressure, the expression

p:C+/(de+qdy+<I>dz)—T

needs to be a function of position independent of the path of the integral,
and so Qdx + qdy + ®dz must be a complete differential. Euler has thus
established the necessity, at least locally. He finishes the sentence however
with “alioquin status aequilibrii, vel saltem possibilis, non daretur” — “other-
wise, a state of equilibrium, or at least a possible one, would not be given.”
He seems to say that any force field under consideration must be compatible
with some possible equilibrium state. He may have d’Alembert’s principle in
mind. That principle, however, applies locally, and Euler is seeking a global
condition. Truesdell points out that there are winding number issues that

need a more careful analysis for resolution.

Paragraphs 88-90: this final section is breath-taking.
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