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Priniples of the Motion of FluidsPart One1. Fluid bodies di�er from solids prinipally in that in general their partilesare not bound to eah other, so these di�erent partiles an be subjet tovery di�erent motions. A motion whih is imparted to one �uid partile isnot so determined by the motion of other partiles that it ould not proeedin its own way. For solid bodies it is quite a di�erent situation; if they werein�exible, their �gures would undergo no hange, and the individual partswould keep at a onstant distane from eah other; so that the motion of allparts would be known, one that of two or three points were given. Eventhen, the motions of these two or three points are not ompletely arbitrary,sine they must keep the same distane from eah other.2. If the solid bodies were �exible, however, the motion of individual par-tiles is less �xed; beause of �exure, the distane or the relative loation1



of diverse partiles is subjet to hange. Even then, the manner of bendingobeys a ertain rule, whih diverse partiles of bodies of this type must followin their motion, to wit that the parts that are subjet to the bending willnot tear apart, or piere eah other; whih indeed will be ruled out for allsuh bodies by a ommon harater of impenetrability.3. [Fluids have an in�nitely large number of oneivable �ows.℄ In �uid bodies,however, whose partiles are not joined to eah other by any bond, the motionof diverse partiles are muh less restrited, and from the motion of a numberof partiles the motion of the others annot be determined. For if the motionof even a hundred partiles were known, it is lear that the motion whihthe remaining partiles ould take is in�nitely variable. From this it anbe onluded that the motion of eah partile of the �uid learly does notdepend on the the motion of others, unless it were bound with them in suha way that it must follow with them.4. At the same time, it annot be that the motion of all the partiles of the�uid is bound in no way by any law; nor an any oneivable motion of asingle partile be allowed. For sine the partiles are impenetrable, it is learthat no motion an take plae where some partiles go through others, orthat they penetrate eah other. An in�nite number of suh motions shouldbe exluded, and only the remaining are to be onsidered, and learly thetask is to determine by whih property these remaining possibilities an be2



distinguished from the others.5. [Cirumsribe the types of kinemati �ows to be onsidered, from whih one an bepiked out by dynamis.℄ Before we an �x on the appropriate motion when a�uid is ated on by a fore, we must delimit those motions whih ould takeplae in this �uid. I shall all them possible motions, to distinguish themfrom those impossible motions whih ould not take plae. To this end wemust deide the harater appropriate to the possible motions, separatingthem from the impossible ones; when this is done we need to determine inany situation whih one of the possible motions atually should be hosen.At that point we must look at the fores to whih the �uid is subjeted,and then the motion ompatible with these fores an be determined by thepriniples of mehanis.6. [Restrition to inompressible �uids.℄ I have deided therefore to look at theharater of motions that are possible for a �uid that annot be penetrated. Ishall posit moreover that the �uid annot be ompressed into a smaller spae,and its ontinuity annot be interrupted. I stipulate without quali�ationthat, in the ourse of the motion within the �uid, no empty spae is leftby the �uid, but it always maintains ontinuity in this motion. After wehave theory suitable for �uids of this nature, it will not be di�ult to extendit further to �uids whose density is variable, and whih do not neessarilyrequire ontinuity. 3



7. If we onsider any portion of a �uid of this type, the motion by whihits individual partiles are moved should be so onstruted that at eah timethey �ll the same amount of spae. If this happens for individual partiles,the portion as a whole is prevented from expanding into a greater amountof spae, or being ompressed into a smaller spae; and it is just motion ofthis type, in whih the �uid is onsidered inapable of either expansion orompression, that we shall take as possible motions. What we have said hereabout an arbitrary portion of �uid, is to be understood as applying to eahelement of the �uid, so that the volume of eah element of the �uid ought toremain unhanged.8. With this ondition satis�ed, we are to onsider what the motion will beat the individual points of the �uid. For an arbitrary element of the �uid,we have to �nd out the instantaneous translation of its bounding surfaes, soas to determine the new portion of spae in whih it will be ontained aftera very small time period. The new portion of spae must be equal in size tothe old portion whih the element had oupied. This equating of size willfully haraterize what an be said about the motion. For if the individualelements oupy equal spaes at eah time, no ompression or expansion willarise in the �uid; so the motion will be ompatible with our ondition, andwe must allow it as a possible motion.
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9. [Resolution into two or three diretions.℄ When we take into aount not onlythe speed but also the diretion of the motion at eah point of the �uid, itbeomes useful to resolve that motion into �xed diretions. This an be doneinto two or three diretions, the �rst if the motion of individual points remainplanar; otherwise the motion should be resolved along three �xed axes. Sinethis latter ase is more di�ult than the former, it is onvenient to start withthe possible motions in the �rst ase, and when that is worked through wean more easily solve the latter ase.10. [Two-dimensional �ow.℄ Therefore I shall attribute to the �uid �ow twosuh diretions, so that the individual partiles and their motions lie in theirplane.
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Let this plane be represented by the plane of Figure 11, and onsider anypoint l of the �uid, whose loation is referred to the orthogonal oordinates
AL = x and Ll = y. Its motion when resolved along the same two diretionsdisplays a veloity along AL, namely lm = u, and along the other axis AB,namely ln = v: thus the atual speed of this point is =

√
uu + vv [= √

u2 + v2℄, and its diretion will be at an angle inlined to the axis AL, whose tangentis = v/u.11. Sine we are proposing to develop the state of the motion that appliesto eah individual point, the veloities u and v depend only on the loationof the point l, and they are to viewed as funtions of the oordinates x andy. We an therefore write a di�erential relation
du = Ldx + ldy,

dv = Mdx + mdy,and sine these are to be omplete di�erentials we must have2 dL/dy = dl/dxand dM/dy = dm/dx . It is to be noted in an expression like dL/dy thatthe di�erential dL of L is to be taken only from the variability of y, and ina similar way in the expression dl/dx the di�erential dl is suh that wouldarise if only x were to vary.1The Appendix gives the omplete set of graphis.2Euler does not use the partial derivative notation ∂/∂x.
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12. [Meaning of di�erentials.℄ Care should be taken that in �frations� of thetype dL/dy, dl/dx, dM/dy, dm/dx the numerators dL, dl, dM, dm notbe thought to denote omplete di�erentials of the funtions L, l, M, m; ratherthey always denote how muh of those di�erentials will arise from variabilityof just that oordinate (and that only) that appears in the denominator, sothat the expressions always represent �nite and determinate quantities. Asimilar meaning is to be understood for L = du/dx, l = du/dy, M = dv/dx,

m = dv/dy; this notation was �rst used by the illustrious Fontaine who hasfurnished us with suh a worthy ompendium of alulus, and I shall adhereto it also.13. Thus, sine we have du = Ldx+ ldy and dv = Mdx+mdy, we may alsoinfer the two veloities at any other point an in�nitely small distane fromthe point l ; for if suh a point is at a distane from l along the axis AL = dx,and along the axis AB = dy, then the veloity of this point along the axisAL will be = u+Ldx+ ldy; and the veloity along the other axis AB will be
= v +Mdx+mdy. Therefore in an in�nitely small time interval dt this pointis moved in the diretion of axis AL by the amount = dt(u + Ldx + ldy) andin the diretion of the other axis AB by the amount = dt(v + mdx + mdy).14. Having noted this, let us onsider a triangular element of water lmn,and we seek the loation to whih it is transferred, by the motion intrinsi tothat element. Let the side lm of this triangular element be parallel to the axis8



AL, the side ln parallel to the axis AB ; and take lm = dx and ln = dy; sothat the point m has oordinates x+dx and y, and point n has oordinates xand y+dy. It is lear that the di�erentials dx and dy ould be either positiveor negative, sine we have not �xed them; and also that the whole mass ofthe �uid an be mentally divided up into elements like this, so that what wepresribed for one will apply equally well to all.15. To make lear how the element lmn is transferred in the small timeinterval dt by its intrinsi motion, we seek the points p, q and r, into whihits angles [verties℄ l, m and n are transferred in the time dt. Sine we shallhave veloities point: l m nalong AL u u+Ldx u+ldyalong AB v v+Mdx v+mdypoint l will ome to p, that is:
AP − AL = udt,

Pp − Ll = vdt.Point m will ome to q, that is:
AQ − AM = (u + Ldx)dt,

Qq − Mm = (v + Mdx)dt.9



But point p will be brought to r, that is:
AR − AL = (u + ldy)dt,

Rr − Ln = (v + mdy)dt.16. Sine points l, m and n are brought to points p, q and r in the smalltime interval dt, the triangle lmn is to be thought as going to the loationindiated by triangle pqr, joined by the line segments pq, pr and qr. Sinethe triangle lmn was set to be in�nitely small, after the translation over thelittle time dt it will still retain a triangular �gure pqr, that is retilinear.Sine the element lmn ought not to be extended into a greater area, nor tobe ompressed into a smaller one, its motion must be so omposed that thearea of triangle pqr equals the area of triangle lmn.17. [Paragraphs 17-20 will establish that ▽ · u = 0, without the bene�t of the diver-gene theorem.℄ But the triangle lmn, if it is a right angle at l, has an area
= 1

2
dxdy, and the area of triangle pqr must also be equal to this. To �ndthat area, we must onsider the oordinates of the points p, q, r, whih are:p q rx AP=x+udt AQ=x+dx+(u+Ldx )dt AR=x+(u+ldy)dty Pp=y+vdt Qq=y+(v+Mdx )dt Rr=y+dy+(v+mdy)dt
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Then the area of the triangle pqr is found from the areas of the followingtrapezoids, thus3:
△pqr = PprR + RrqQ − PpqQ.Sine however these trapezoids have two sides parallel and perpendiular tothe base AQ, their areas are easily determined.18. For we have, as in geometry,

PprR =
1

2
PR(Pp + Rr),

RrqQ =
1

2
RQ(Rr + Qq),

P pqQ =
1

2
PQ(Pp + Qq).Colleting these together, we �nd:

△pqr =
1

2
PQ · Rr − 1

2
RQ · Pp − 1

2
PR · Qq.[Euler de�nes new quantities Q, R, q, r.℄3See translator's omment to this paragraph at the end of this doument.
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For the sake of brevity, put
AQ = AP + Q

AR = AP + R

Qq = Pp + q

Rr = Pp + rso that
PQ = Q, PR = R, RQ = Q − R.Then △pqr = 1

2
Q(Pp+r)− 1

2
(Q−R)Pp− 1

2
R(Pp+q) or △pqr = 1

2
Qr− 1

2
Rq.19.But from the oordinate values shown above [paragraph 17℄

Q = dx + Ldxdt; q = 0 + Mdxdt;

R = 0 + ldydt; r = dy + mdydt.After substitution, the area of the triangle beomes
△pqr =

1

2
dxdy(1 + Ldt)(1 + mdt) − 1

2
Mldxdydt2,or

△pqr =
1

2
dxdy(1 + Ldt + mdt + Lmdt2 − Mldt2)12



and sine this should be equal to the area of triangle lmn, whih is
= 1

2
dxdy, there results this equation:

Ldt + mdt +Lmdt2 − Mldt2 = 0,

L + m +Lmdt − Mldt = 0.20. Sine the terms Lmdt and Mldt are vanishingly small ompared to�nite L and m, we shall have the equation L + m = 0. For this reason, if weare dealing with a possible motion, the veloities u and v of any point l mustbe suh that in their di�erentials
du = Ldx + ldy,

dv = Mdx + mdywe shall have L + m = 0. Sine L = du/dx and m = dv/dy, the veloitiesu and v, whih are oneived as those in point l in the diretions of ALand AB, should be thought of as funtions of the oordinates x and y suhthat du/dx + dv/dy = 0, and the riterion of possible motions onsists inthe ondition du/dx + dv/dy = 0. Iif this ondition does not hold, the �uidmotion annot take plae.21. [Three-dimensional �ows.℄ We must proeed in the same way when the�uid motion does not resolve into a plane. To investigate the question taken13



in its widest sense, we shall take the individual partiles of the �uid a�etingeah other in any sort of motion, with the only proviso being that neitherompression nor expansion our in any part. We seek to determine fromthis what sort of veloities an our and give a possible motion; or, whatomes to the same thing, we want to exlude from the list of possible motionsthose whih do not observe these onditions, so that the riterion for possiblemotions an be determined.22. So we shall onsider any point λ of the �uid, whose loation we shallrepresent using three orthogonal axes AL, AB, AC. [Figure 2 below.℄ Let thethree oordinates of the point λ parallel to these axes be AL = x, Ll = y and
lλ = z; whih will be gotten if from the point λ a perpendiular λl is droppedto the plane determined by the two axes AL and AB. From the point l wethen take the perpendiular lL to the axis AL. In this way the loation ofthe point λ an generally be expressed by three oordinates. This will applyat all points of the �uid.
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23. The motion of the point λ an be resolved into three diretions λµ. λνand λo parallel to the axes AL, AB and AC. So let the three diretions ofthe veloity of the point λ be λµ = u, λν = v, λo = w ; and sine theseveloities an vary with the point λ, they an be onsidered as funtions ofthe three oordinates x, y and z. Taking di�erentials, we get the forms:
du = Ldx + ldy + λdz

dv = Mdx + mdy + µdz

dw = Ndx + ndy + νdz
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and the oe�ients L, l, λ, M, m, µ, N, n, ν will be funtions of the oor-dinates x, y and z.24. As these di�erential forms are omplete, it follows, in the same way asthe above, that
dL/dy = dl/dx; dL/dz = dλ/dx; dl/dz = dλ/dy

dM/dy = dm/dx; dM/dz = dµ/dx; dm/dz = dµ/dy

dN/dy = dn/dx; dN/dz = dν/dx; dn/dz = dν/dyeah fration showing how muh the variable in the numerator hanges for agiven hange in the oordinate in the denominator.25. In an in�nitesimal time dt, the point λ an move in all three diretions:by the amounts udt in the diretion of AL, vdt in the diretion of AB, wdt inthe diretion of AC. Sine however the speed of the point λ, whih we mayall V, arises from the omposition of the motions in the three diretions,whih are orthogonal, we shall have V =
√

(uu + vv + ww), and the distanetraveled in the time dt will be = V dt.26. Let us now onsider any volume element of the �uid, to see where itmay advane to in an in�nitesimal time dt. Sine it does not matter what�gure we attribute to it, as long as the whole �uid mass an be divided intosuh �gures, for ease of alulation let the �gure be a retangular triangular16



pyramid, ending at the four solid angles4 λ, µ, ν, o so that the the oordinatesare given by the sheme:along: λ µ ν oAL x x + dx x xAB y y y + dy yAC z z z z + dzand sine the base of this pyramid is λµν = lmn = 1

2
dxdy, and the altitudeis λo = dz, the volume will be = 1

6
dxdydz.27. We shall now investigate where these individual verties λ, µ, ν, o willbe arried in the in�nitesimal time dt. For eah of these, we must onsiderthe three veloities along the three oordinate axes, for these will di�er fromthe three original veloities u, v, w aording to the following sheme.5Parallel to λ µ ν oAL u u + Ldx u + ldy u + λdzAB v v + Mdx v + mdy v + µdzAC w w + Ndx w + ndy w + νdz28. If the points λ, µ, ν, o are arried in the in�nitesimal time dt to points

π, φ, ρ, and σ, whose oordinates are given parallel to the three axes, the4This is a di�erent set of meanings for these symbols.5Remember that Euler uses λ, µ, ν with two sets of meanings.17



instantaneous translations along these axes will be: [for λ → π,℄
AP − AL = udt,

Pp − Ll = vdt,

pπ − lλ = wdt;[for µ → φ℄
AQ − AM = (u + Ldx)dt,

Qq − Mm = (v + Mdx)dt,

qφ − mµ = (w + Ndx)dt,[for ν → ρ ℄
AR − AL = (u + ldy)dt,

Rr − Ln = (v + mdy)dt,

rρ − nν = (w + ndy)dt,[for o → σ ℄
AS − AL = (u + λdz)dt,

Ss − Ll = (v + µdz)dt,

sσ − lo = (w + νdz)dt.18



Thus we shall have as oordinates for the four points6: [for π ℄
AP = x + udt,

Pp = y + vdt,

pπ = z + wdt;[for φ℄
AQ = x + dx + (u + Ldx)dt,

Qq = y + (v + Mdy)dt,

qφ = z + (w + Ndx)dt;[for ρ℄
AR = x + (u + ldy)dt,

Rr = y + dy + (v + mdy)dt,

rρ = z + (w + ndy)dt;6[The original had a misprint.℄

19



[for σ℄
AS = x + (u + λdz)dt,

Ss = y + (v + µdz)dt,

sσ = z + dz + (w + νdz)dt.29. When therefore the verties λ, µ, ν, o of the pyramid are translatedinto points π, φ, ρ, σ in the in�nitesimal time dt, these new points are to de-termine a triangular pyramid suh that the volume of both be equal, namely
= 1

6
dxdydz. So the task omes down to determining the volume of the pyra-mid πφρσ.7It is lear, however, that this pyramid is what we have left if from the volumeelement pqrπφρσ we take away the element pqrπφρ , for the latter element isa prism sitting perpendiularly8 on the triangular base pqr, with the upperoblique setion πφρ ut o�.30. In any trunated prism of this type, the element pqrπφρ an be resolvedinto three other volumes, whih are:7The following paragraphs up through 36 are devoted to this task. If we allow use ofthe determinantal formula for a parallelpiped, then the equation at the end of 35 followsimmediately, whih implies that ∇ · u = 0.8The triangle πφρ di�ers from pqr only in the z−oordinates.
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I. pqsπφσII. prsπρσIII. qrsφρσin suh a way that we must have
1

6
dxdydz = pqrsπφσ + prsπρσ + qrsφρσ − pqrπφρ.When however a prism of this sort sits perpendiularly on its lower base, withthree di�erent altitudes, then its volume is found if the base is multiplied bythe sum of the three altitudes, divided by three.31. Therefore the volume of these trunated prisms will be:

pqsπφσ =
1

3
pqs(pπ + qφ + sσ),

prsπρσ =
1

3
prs(pπ + rρ + sσ),

qrsφρσ =
1

3
qrs(qφ + rρ + sσ),

pqrπφρ =
1

3
pqr(pπ + qφ + rρ).Sine however pqr = pqs + prs + qrs, the sum of the �rst three volumes,minus the last, will be

1

6
dxdydz = −1

3
pπ.qrs − 1

3
qφ.prs − 1

3
rρ.pqs +

1

3
sσ.pqr;21



or
dxdydz = 2pqr.sσ − 2pqs.rρ − 2prs.qφ − 2qrs.pπ.32. It remains to asertain the bases of these prisms. Before we do this, toredue alulations we put9
AQ = AP + Q; Qq = Pp + q; qφ = pπ + φ,

AR = AP + R; Rr = Pp + r; rρ = pπ + ρ,

AS = AP + S; Ss = Pp + s; sσ = pπ + σand with these substitutions, the terms ontaining pπ anel eah other, andwe shall have
dxdydz = 2pqr.σ − 2pqs.ρ − 2prs.φand the number of bases to be investigated is redued by one.33. Now the triangle pqr will be found, if the trapezoid PpqQ is ut outfrom the �gure PprqQ, or from the ombined trapezoids PprR + RrqQ .Hene

△pqr =
1

2
PR(Pp + Rr) +

1

2
RQ(Rr + Qq) − 1

2
PQ(Pp + Qq);9This orrespondd to the abbreviations in paragraph 18.
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but sine PR = R, RQ = Q − R, and PQ = Q, we shall have
△pqr =

1

2
R(Pp − Qq) +

1

2
Q(Rr − Pp) =

1

2
Qr − 1

2
Rq.In a similar way we shall have:

△pqs =
1

2
PS(Pp + Ss) +

1

2
SQ(Ss + Qq) − 1

2
PQ(Pp + Qq),

△pqs =
1

2
S(Pp + Ss) +

1

2
(Q − S)(Ss + Qq) − 1

2
Q(Pp + Qq)whene

△pqs =
1

2
S(Pp − Qq) + Q(Ss − Pp) =

1

2
Qs − 1

2
Sq.Next,

△prs =
1

2
PR(Pp + Rr) +

1

2
RS(Rr + Ss) − 1

2
PS(Pp + Ss),

△prs =
1

2
R(Pp + Rr) +

1

2
(S − R)(Rr + Ss) − 1

2
S(Pp + Ss)whene

△prs =
1

2
R(Pp − Ss) +

1

2
S(Rr − Pp) =

1

2
Sr − 1

2
Rs.34. Substituting in these values, we shall obtain

dxdydz = (Qr − Rq)σ + (Sq − Qs)ρ + (Rs − Sr)φ,23



so the volume of the pyramid πφρσ will be
1

6
(Qr − Rq)σ +

1

6
(Sq − Qs)ρ +

1

6
(Rs − Sr)φ.From the values reorded in paragraph 28 above,

Q = dx + Ldxdt q = Mdxdt φ = Ndxdt

R = ldydt r = dt + mdydt ρ = ndydt

S = λdzdt s = µdzdt σ = dz + νdzdt.35. Sine it follows that
Qr − Rq = dxdy(1 + Ldt + mdt + LMdt2 − MLdt2)

Sq − Qs = dxdz(−µdt − Lµdt2 + Mλdt2)

Rs − Sr = dydz(−λdt− mλdt2 + lµdt2),therefore we �nd that the volume of the pyramid πφρσ is expressed as
1

6
dxdydz
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whih should be held equal to the volume of the pyramid λµνo = 1

6
dxdydz .After dividing by dt, there results the equation

0 = L + m + ν +dt(Lm + Lν + mν − Ml − Nλ − nµ)

+dt2(Lmν + Mnλ + Nlµ − Lnµ − Mlν − Nlµ).36. Disregarding the in�nitely small terms, we have the equation L + m +

ν = 0, in whih we have asertained the ondition on the veloities u, v, wto admit the �uid motion as possible. Sine L = du/dx, m = dv/dy and ν =

dw/dz, the ondition for a possible motion, when any point with oordinatevalues x, y, z has orresponding veloities u, v, w, will therefore be:
du

dx
+

dv

dy
+

dw

dz
= 0.By this ondition10 no part of the �uid will pass into a greater or smallerspae, and the ontinuity of the �uid (and also the density) will be maintainedwithout interruption.37. This property of the �uid, however, is to be interpreted to hold forall parts of the �uid at eah moment in time: that is, at eah moment thethree veloities u, v, w for all points ought to be suh funtions of the threeoordinates x, y and z, that du/dx + dv/dy + dw/dz = 0 will hold, and thisharater of those funtions limits any proposed motion of the individual10Euler has atually proved that this is a neessary ondition.25



points of the �uid. At any other time, however, the motion of those pointsould be quite di�erent, restrited only by the requirement that the aboveproperty still take plae. Of ourse, the same behavior up to the present isassumed.38. If however we wish to think of time also as variable, so that the motionof a point after an elapsed time t is to be de�ned, when the position λ isgiven by the oordinates AL = x, Ll = y, and lλ = 11, it is lear that thethree veloities u, v, w depend not only on the oordinates x, y and z, butalso on the time t, so that they are funtions of these four quantities x, y, zand t, so that12
du =Ldx + ldy + λdz + Ldt,

dv =Mdx + mdy + µdz + Mdt,

dw =Ndx + ndy + νdz + N dt.Meanwhile however, we shall always have L + m + ν = 0, beause at anyinstant the time t is to be taken as onstant, so that dt = 0. Thus it isneessary� however the funtions u� v� w may hange with time� that at eah11A, L, l, λ represent points is spae, while the L, l and λbelow represent di�erentialoe�ients.12I have substituted alligraphi for German letters in this translation. It is too di�ultfor non-Germans to distinguish between the German N and R.
26



moment there holds the ondition
du

dx
+

dv

dy
+

dw

dz
= 0.Sine this ondition assures that any portion of the �uid will be arried inthe in�nitesimal time dt into an equal volume, and also likewise under thesame ondition in the following element of time, it follows that this musthappen in all following elements of time.

Part Two39. [Dynamis.℄ From those possible motions� whih have satis�ed the aboveondition� we shall now investigate the nature of that motion whih atuallyan be sustained in the �uid. That is� besides the ontinuity of the �uid� andits density being onstant, aount must be taken here of the fores a�etingthe movement of individual elements of the �uid. For whatever the motionof eah element� if it is not uniform or not pointed in a [ommon℄ diretion�the hange of motion ought to onform to the fores applied to this element.No matter how the hange of motion is determined by these given fores� theabove formulas must still be a onstraint on this hange of motion� so newonditions must be found, by whih any hitherto possible motion is restritedto the atual motion. 27



40. [Planar motion.℄ Let us also set up this investigation in two parts; and��rst� we shall think of all the motion of the �uid as taking plae in thesame plane
 Therefore let the position oordinates of any point l be de�nedas before as AL = x, Ll = y; and now in the elapsed time t let the twoveloities of l in diretions parallel to the axes AL and AB be u and v ;beause we now have to take aount the hange in time� u and v will befuntions of x� y and t, so that13
du =Ldx + ldy + Ldt,

dv =Mdx + mdy + Mdt;and on aount of the ondition that we found above we must have L + m = 0.41. In the in�nitesimal elapsed time dt� let therefore the point l be broughtto p� with a displaement = udt in the diretion of the axis AL and witha displaement = vdt in the diretion of the other axis AB; to obtain theinrease in the veloities u and v of the point l whih our in the in�nitesimaltime dt, the distane dx ought to be written udt and the distane dy as vdt,so that
du =Ludt + lvdt + Ldt,

dv =Mudt + mvdt + Mdt,13In modern notation, L = ∂u∂t, and M = ∂v/∂t.28



from whih the aelerative fores14 needed to produe these aelerations inthe orresponding diretions will be:
along AL : 2(Lu + lv + L)

along AB : 2(Mu + mv + M)and the fores ating on the partile of water l should be equal to theseexpressions.42. Among the fores that at on the partiles of water, we have to give�rst onsideration to gravity. Its e�et will be null, if the plane of motion ishorizontal. If however the plane of motion is at an inline, in the diretion ofthe axis AL, the horizontal axis beingAB, the aelerative fore due to gravitywill take a onstant value α in the diretion of AL. Moreover, we ought not toneglet frition, beause the motion is often there-by appreiably impeded.Although the laws governing frition are not yet satisfatorily established,never-the-less we shall perhaps not err too muh from the mark if , in analogywith the frition of solid bodies, we set the frition to be proportional to thepressure of the partiles of water ating on eah other.14Euler de�nes the measure of fore as the aeleration needed to move a unit mass a unitdistane in the diretion of the fore, in a unit time. Sine our notion of aeleration willgive one-half of a unit distane, Euler's measure of fore will require twie our aeleration.
29



43. As the �rst step then, we must ompute the pressure with whih thepartiles of water are ating on eah other. For a partile pressed all aroundby adjaent partiles, to the extent that the pressure in some diretion is notbalaned, just so muh will the motion of the partile be a�eted. 15 That isto say, the water at eah point is subjet to a ertain state of ompression,whih will be like what ours in still water at a ertain depth. It is onvenientto use this depth, at whih still water is found to be in the same state ofompression, as an expression for the pressure at any point l of the water.Therefore, if p is that still-water depth that expresses the pressure at pointl, then p will be a ertain funtion of the oordinates x and y, and if the thepressure at l also varies with time, p will also be a funtion of time t.44. Therefore we shall put dp = Rdx + rdy +Rdt, and we shall onsider aretangular element of water lmno [Fig. 3℄, whose sides are lm = no = dxand ln = mo = dy; the area being = dxdy.15Euler is onsidering a material partile extending in eah diretion.
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If now the pressure at l is = p, the pressure at m will be = p + Rdx, at n
= p + rdy and at o will be = p + Rdx + rdy. Then the side lm is pressed bya fore = dx(p+ 1

2
Rdx). while the opposite side no will be pressed by a fore

= dx(p+ 1

2
Rdx+ rdy). From these two fores, the element lmno will be havea resulting fore in the diretion of ln that is = −rdxdy. In the same way,from the fores dy(p + 1

2
rdy) and dy(p + Rdx + 1

2
rdy) whih at on the sidesln and mo, the resulting fore ating on the element in the diretion lm willbe = −Rdxdy.45. Hene there arises an aelerative fore in the diretion of lm that is

= −R, and an aelerative fore in the diretion of ln that is = −r. The�rst of these along with the fore due to gravity will then be α − R. Absentfrition, we shall have the equations α − R = 2Lu + 2lv + 2L or
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R = α − 2Lu − 2lv − 2L,and −r = 2Mu + 2mv + 2M or
r = −2Mu − 2mv − 2Mwhih together give us

dp = αdx − 2(Lu + lv + L)dx − 2(Mu + mv + M)dy + Rdt.This di�erential should be omplete, that is, integrable.46. Sine the term αdx is already integrable, and as of yet we know nothingof Rdt, by the very nature of omplete di�erentials it is neessary for theabove expression that
d(Lu + lv + L)

dy
=

d(Mu + mv + M)

dxand thene, beause du/dx = L, du/dy = l, dv/dx = M, and dv/dy = m,

Ll +
udL

dy
+ lm +

vdl

dy
+

dL
dy

= ML +
udM

dx
+ mM +

vdm

dx
+

dM
dx
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whih redues to this formula:
(L + m)(l − M) + u

(

dL

dy
− dM

dx

)

+ v

(

dl

dy
− dm

dx

)

+
dL
dy

− dM
dx

= 0.47. Sine Ldx+ldy+Ldt and Mdx+mdy+Mdt are omplete di�erentials16,we know that
dL

dy
=

dl

dx
;

dm

dx
=

dM

dy
;

dL
dy

=
dl

dt
and

dM
dx

=
dM

dt
,and when these expressions are substituted, we shall have the equation:17

(L + m)(l − M) + u

(

dl − dM

dx

)

+ v

(

dl − dM

dy

)

+
dl − dM

dt
= 0whih learly will be satis�ed by l = M : that is, by du/dy = dv/dx. Thislatter ondition requires in turn that udx + vdy be a omplete di�erential,and this latter is the desired ondition desribing those motions that are tobe allowed.1848. This riterion is independent of the previous one of ontinuity anduniform density. For this property that udx + vdy be a omplete di�erentialwould still apply, even if the moving �uid were to hange its density, as inthe motion of elasti �uids, or as happens in air. That is, the veloities u16= du and dv respetively.17I have orreted some obvious misprints on this page.18See translator's omment to this paragraph.33



and v would be suh funtions of the oordinates x and y that at any �xedtime t the expression udx + vdy would be ompletely integrable.49. We are now in a position to de�ne the pressure p, whih we need todetermine ompletely the motion of the �uid. Sine we have found that
M = l, we shall have19

dp = αdx− 2u(Ldx + ldy) − 2v(ldx + mdy) − 2Ldx− 2Mdy + Rdt.From Ldx + ldy = du − Ldt and ldx + mdy = dv −Mdt,

dp = αdx − 2udu − 2vdv + 2Ludt + 2Mvdt− 2Ldx − 2Mdy + Rdt.If we wish to de�ne the pressure at eah loation for a given �xed time20, theequation to be onsidered is:
dp = αdx − 2udu − 2vdv − 2Ldx − 2Mdyand, on writing L = du/dt and M = dv/dt, we then get

dp = αdx − 2udu − 2vdv − 2
du

dt
dx − 2

dv

dt
dy.19Atually, the argument in the next two lines does not depend on M = l.20That is, to get the spatial gradient of pressure.34



In integrating this equation, the time t is to be held onstant.50. Given the hypotheses, [we shall see that℄ this equation is integrable, ifwe take into aount the riterion that udx + vdy be a omplete di�erential,keeping the time t onstant. Let S be its integral, whih is a funtion of x, yand t, whih gives dS = udx + vdy when dt = 0. If we further allow t to bevariable, this beomes
dS = udx + vdy + Udt.Then we shall have du/dt = dU/dx and dv/dt = dU/dy. Then U = dS/dt.51. Introduing these expressions gives us:

du

dt
dx +

dv

dt
dy =

dU

dx
dx +

dU

dy
dywhose integral for a �xed time t is learly = U. To make this more learlyapparent, let us put dU = Kdx + kdy, so dU/dx = K and dU/dy = k. Then

dU

dx
dx +

dU

dy
dy = Kdx + kdy = dU.The integral of this equation being = U = dS/dt, then

dp = αdx − 2udu − 2vdv − 2dU35



whih upon integration yields:
p = Const. + αx − uu − vv − 2

dS

dt
,

S being a funtion of x, y and t. For dt = 0, its di�erential is udx + vdy.52. To understand better the nature of this formula, we shall onsider thespeed at a point l, whih will be = V =
√

(uu + vv). The pressure moreoverwill be: p = Const. + αx − uu − vv − 2dS/dt. The S in the last term dSdenotes S =
∫

(udx + vdy), where we view the time t as variable.53. Suppose we now wished to inlude a frition term that is proportionalto the pressure p in e�et while the point l traverses an in�nitesimal distane
ds. The retarding fore arising from the frition would then be = p/f. Putting
dS/dt = U, our di�erential equation at a de�nite point t in time beomes:

dp = αdx − p

f
ds − 2V dV − 2dU.Let e be the number whose hyperboli logarithm is = 1. Integration thengives21

p = e−s/f

∫

es/f (αdx − 2V dV − 2dU)21The orginal has dV instead of dU.
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or
p = αx − V V − 2U − 1

f
e−s/f

∫

es/f (αx − V V − 2U)ds.54. For the �uid motion that is atually to be sustained, the riterionis that udx + vdy be a omplete di�erential at any �xed time t22. Theontinuity ondition requires that the density stay onstant and uniform sothat du/dx + dv/dy will be = 0, whene it follows that −udy + vdx is aomplete di�erential23. Thus the veloity omponents u and v together mustbe funtions of x, y and t suh that both the expressions udx + vdy and
−udy + vdx are omplete di�erentials.55. [Flows in three dimensions.℄ Let us now start to investigate the ase wherethe three veloity omponents u, v, w of the point λ, direted along the axes
AL, AB, AC, are funtions of the oordinates x, y, z, and of the time t,suh that

du = Ldx + ldy + λdz + Ldt

dv = Mdx + mdy + µdz + Mdt

dw = Ndx + ndy + νdz + N dt;and, aording the the ondition given earlier, we must have L + m + ν = 0even if the time t is allowed to vary. This is the same as
du

dx
+

dv

dy
+

dw

dz
= 0.22See the translator's omment for paragraph 47.23This expression laks the minus sign both times it appears in this paragraph.37



This ondition will not be used in the present part of our analysis.2456. After an in�nitesimal time dt, the point λ is brought to position π. Ittraverses a distane = udt in the diretion of the axis AL, a distane = vdtin the diretion of AB, and a distane = wdt in the diretion of AC. Thethree veloity omponents for the point λ at postion π will be:
along AL = u + Ludt + lvdt + λwdt + Ldt,

along AB = v + Mudt + mvdt + µwdt + Mdt,

along AC = w + Nudt + nvdt + νwdt + N dt.Then the aelerations along these same diretions will be:
along AL = 2(Lu + lv + λw + L),

along AB = 2(Mu + mv + µw + M),

along AC = 2(Nu + nv + νw + N ).57. Let us take the axis AC in the vertial diretion, so that the othertwo axes AL and AB are horizontal. Along the axis AC, there shall be anaelerative fore = −1 due to gravity. The pressure p of point λ will have adi�erential
dp = Rdx + rdy + ρdz,24The ondition will be re-introdued in paragraph 64.
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if time is held onstant. There arise from this the three aelerations
AL : −R, AB : −r, AC : −ρ.These various equations are ombined in the same way that we used in para-graphs 44 and 45, and we need not repeat the argument here. The resultwill be the equations:

R = −2(Lu + lv + λw + L),

r = −2(Mu + mv + µw + M),

ρ = −1 −2(Nu + nv + νw + N ).58. Sine however the form dp = Rdx + rdy + ρdz must represent aomplete di�erential, we shall have
dR/dy = dr/dx; dR/dz = dρ/dx; dr/dz = dρ/dy.After di�erentiation and dividing by -2, we shall obtain the three equations25

I











uLy + vly + wλy + Ly +Ll + lm + λn =

uMx + vmx + wµx + Mx +ML + mM + µN,25To inrease legibility in these two paragraphs, I follow the more modern pratieindiating partial derivatives by subsripts. In modern terms, Euler has taken the urlto eliminate the pressure gradient. The dependent variables in the resulting di�erentialequations in paragraph 59 beome the vortiity omponents.39



II











uLz + vlz + wλz + Lz +Lλ + lµ + λν =

uNx + vnx + wνx + Nx +NL + nM + νN,

III











uMz + vmz + wµz + Mz +Mλ + mµ + µν =

uNy + vny + wνy + Ny +Nl + nm + νn.59. By the property of omplete di�erentials,26
Ly = lx; mx = My; λy = lz; µx = Mz ; Ly = lt; Mx = Mt,

Lz = λx; lz = λy; nx = Ny; νx = Nz; Lz = λt; Nx = Nt,

Mz = µx; Ny = nx; mz = µy; νy = nz; Mz = µt; Ny = nt.Substitute these in the above three equations, whih then beome
(

dl − dM

dt

)

+u

(

dl − dM

dx

)

+v

(

dl − dM

dy

)

+w

(

dl − dM

dz

)

+(l − M) (L + m)+λn−µN = 0,

(

dλ − dN

dt

)

+u

(

dλ − dN

dx

)

+v

(

dλ − dN

dy

)

+w

(

dλ − dN

dz

)

+(λ − N) (L + ν)+lµ−nM = 0,

(

dµ − dn

dt

)

+u

(

dµ − dn

dx

)

+v

(

dµ − dn

dy

)

+w

(

dµ − dn

dz

)

+(µ − n) (m + ν)+Mλ−Nl = 0.26Eah line of equalities is used in the orresponding equation of the previous paragraph.40



60. It is lear that these three equations are satis�ed on setting:27
l = M ; λ = N ; µ = N ;and therein lies the ondition as derived from our analysis of applied fores.28These an be expressed in our usual notation as

du
dy = dv

dx; du
dz = dw

dx ; dv
dz = dw

dy .These, however, are the very onditions required for the form udx + vdy +

wdz to be a omplete di�erential. This ondition then states that the threeveloity omponents u, v, w be funtions of x, y, z along with t, suhthat at any �xed time the form udx + vdy + wdz admit an integral.61. For a �xed moment in time (i.e., dt = 0), then, we have
du =Ldx + Mdy + Ndz

dv =Mdx + mdy + ndz

dw =Ndx + ndy + νdz27See translator's omment for this paragraph.28quibus ontinetur riterium, quod onsideratio solliitationum suppeditat.
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and the values for R, r, ρ will be:
R = −2(Lu + Mv + Nw + L),

r = −2(Mu + mv + nw + M),

ρ = −1 −2(Nu + nv + νw + N ).We shall have this equation for the pressure:
dp = −dz −2u(Ldx + Mdy + Ndz)

−2v(Mdx + mdy + ndz)

−2w(Ndx + ndy + νdz)

−2Ldx − 2Mdy − 2N dz

= dz − 2udu − 2vdv − 2wdw − 2Ldx − 2Mdy − 2N dz.62. Sine L = du/dt; M = dv/dt; N = dw/dt, integration gives
p = C − z − uu − vv − ww − 2

∫
(

du

dt
dx +

dv

dt
dy +

dw

dt
dz

)

.By the ondition found above, udx + vdy + wdz will be integrable, and wean take this integral to be = S. A variable time t an now be allowed, andwe an take
dS = udx + vdy + wdz + Udt,42



with du/dt = dU/dx; dv/dt = dU/dy; dw/dt = dU/dz.
29 Consequently,for that point in time assumed in the above integral,

dU

dx
dx +

dU

dy
dy +

dU

dz
dz = dUand we shall have

p = C − z − uu − vv − ww − 2U,or30
p = C − z − uu − vv − ww − 2

dS

dt
.63. The form uu + vv + ww is seen to express the square of the speed Vat the point λ, so the equation for the pressure beomes

p = C − z − V V − 2
dS

dt
.To evaluate this, �rst we must seek the integral S of the form udx+vdy+wdz.Its di�erential with only the time t being variable will be divided by dt, whihwill give the value of dS/dt, whih then goes into the expression we foundfor the pressure.29Also, U = ∂S/∂t.30The original has dS/ds. 43



64. If we now onjoin the earlier riterion whih onstrains any possiblemotion, then the three veloity omponents u, v, w should be suh funtionsof the oordinates x, y and z with [�xed?℄ time t, that �rst udx + vdy + wdzbe a omplete di�erential, and also that du/dx + dv/dy + dw/dz = 0. Anymotion of the �uid must be subjet to these onditions, if the density istaken not to vary. Moreover, if the form udx+vdy +wdz+Udt is a ompletedi�erential with variable time t, then the state of the pressure at any point
λ is expressed in terms of a depth p with

p = C − z − uu − vv − ww − 2U.This holds when the �uid experienes gravity in the z -diretion, the planeBAL being horizontal.65. [More general ase.℄ Suppose we assign a di�erent diretion for gravity,or we allow any variable fores to at on individual partiles of the �uid,so that a di�erene in the value of the pressure p would now enter. Therewould still be no hange in the law governing the veloity omponents ofeah point of the �uid. The three veloity omponents must always be soonstituted suh that udx + vdy + wdz be a omplete di�erential, and suhthat du/dx+dv/dy +dw/dz = 0. The three veloity omponents u, v, w anbe set up in an in�nite number of ways to satisfy these two onditions ; andthen the �uid pressure an be assigned at eah point.44



66. It will be muh more di�ult, however, to determine the motion of the�uid at eah point when variable applied fores and pressure are assigned.For in these ases we need to �nd various equations of the form p = C −

z − uu − vv − ww − 2U. The funtions u, v, w have to be de�ned to satisfynot only suh equations, but also the previously spei�ed laws. This willrequire the utmost analytial skill. The sensible approah is to inquire intothe nature of suitable funtions whih would onform to eah riterion.67. The best plae to start is with the integral whose di�erential is udx+

vdy + wdz when time is held �xed. Let S be this integral, whih will be afuntion of x, y, and z, for �xed but arbitrary time t. If the quantity S isdi�erentiated, the oe�ients of the di�erentials dx, dy, dz will provide theveloity omponents u, v, w whih obtain at the urrent time at the �uidpoint whose oordinates are x, y and z. The question now omes down tothis: to de�ne what funtions of x, y and z may be allowed for S so that wealso have du/dx + dv/dy + dw/dz = 0. Sine u = dS/dx, v = dS/dy, and
w = dS/dz, this means that

ddS

dx2
+

ddS

dy2
+

ddS

dz2
= 0.
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68. [Speial solutions.℄ Sine it is not obvious how in general this an bemade to happen, I shall onsider ertain lasses of possibilities. Let then
S = (Ax + By + Cz)n.Then dS/dx = nA(Ax+By+Cz)n−1 and ddS/dx2 = n(n−1)AA(Ax+By+

Cz)n−2, and similar forms will hold for ddS/dy2 and ddS/dz2. From this itmust be that
n(n − 1)(Ax + By + Cz)n−2(AA + BB + CC) = 0.This will be satis�ed in the �rst ase when either n = 0 or n = 1. From thesewill obtain two suitable solutions, namely S = onstant and S = Ax + By +

Cz, where the onstants A, B, C and the time an be hosen arbitrarily.69. If however n is neither 0 nor 1, then we neessarily have31 AA+BB +

CC = 0. A suitable solution for S will now be
S = (Ax + By + Cz)nin whih the order n an be any number, but the time t an enter into thisorder n. It is lear that any ombination of suh forms an be taken for the31Evidently we are now onsidering omplex numbers.46



solution S, so that:
S =α + βx + γy + δz + ǫ(Ax + By + Cz)n′

+ ζ(A′x + B′y + C ′z)n′′

+ η(A′′x + B′′y + C ′′z)n′′′

+ θ(A′′′x + B′′′y + C ′′′z)n′′′′

etc.as long as
AA + BB + CC = 0;

A′A′ + B′B′ + C ′C ′ = 0;

A′′A′′ + B′′B′′ + C ′′C ′′ = 0 etc.70. Suitable formulas for S for the smaller orders, where the oordinatesx, y, z are raised to the �rst, seond, third or fourth powers, will be thefollowing:32
I. S = A,

II. S = Ax + By + Cx,

III. S = Axx + Byy + Czz + 2Dxy + 2Exz + 2Fyz

(A + B + C = 0),

IV. S = Ax3 + By3 + Cz3 + 3Dxxy + 3Fxxz + 3Hyyz + 6Kxyz

A + E + G = 0; B + D + I = 0; C + F + H = 0;32See omment on this paragraph at the end of the doument.
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+Ax4 + 6Dxxyy + 4Gx3y + 4Hxy3 + 12Nxxyz

V. S = +By4 + 6Exxzz + 4Ix3z + 4Kxz3 + 12Oxyyz

+By4 + 6Exxzz + 4Ix3z + 4Kxz3 + 12Oxyyz

where A + D + E = 0 G + H + P = 0,

B + D + F = 0 I + K + O = 0,

C + E + F = 0 L + M + N = 0.

71. We an now see how to get the like formulas for any order. First,the same numerial oe�ients are given in the individual terms as our inthe law of permutation of quantities � that is, whih arise if the trinomial
x+y+z is raised to that order power. Next, inde�nite literalsA, B, C, et. aremultiplied into these numerial oe�ients. Then, without regard to theseliterals, hek wherever there our three terms of the type LZxx+MZyy +

NZzz, whih have the same ommon fator arising from the variables.33 Asoften as this ours, speify that the sum L + M + N of the three literals beset to zero. For example, for the �fth power there will be had
+Ax5 + 5Dx4y + 5Dx4z + 10Gx3yy + 10Gx3zz + 20Kx3yz + 30Nxyyzz

S = +By5 + 5Exy4 + 5Ey4z + 10Hx2y3 + 10Hy3zz + 20Lxy3z + 30Oxxyzz

+Cz5 + 5Fxz4 + 5Fyz4 + 10Ixxz3 + 10Iyyz3 + 20Mxyz3 + 30Pxxyyz,33That is, arising from the permutations of x , y , z .
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with the following onditions for the literals:
A + G + G = 0; D + H + O = 0; D + I + P = 0

B + H + H = 0; E + G + N = 0; E + I + P = 0; K + L + M = 0

C + I + I = 0; F + G + N = 0; F + H + O = 0.In a similar way, there will be 15 onditions of this type for the sixth order,21 for the seventh, 28 for the eighth, and so on.72. [n=0.℄ Now in the �rst formula S = A, the three veloity omponentswill be zero, sine the oordinates x, y and z do not appear at all. Thisdesribes a �uid at rest. The pressure at any point, however, an be variablewith the time. For A is an arbitrary funtion of time, and so the pressure ata point λ and time t will be p = C−2dA
dt
−z. This formula indiates the stateof a �uid subjet to any fores whatsoever at any point in time, so long asthe fores balane eah other so that no motion of the �uid will arise. Thiswill happen for example if the �uid is ontained in a vase without a meansof egress, yet subjet to any sort of fores.73. [n=1.℄ For the formula S = Ax+By +Cz, di�erentiation at the point

λ will give three veloity omponents:
u = A; v = B & w = C.49



Thus, at a given time, all points of the �uid will be arried with the samemotion, in the same diretion. Then the �uid as a whole will move like a solidbody, arried by a ommon but hanging motion. At a di�erent point in time,as the applied external fores hange, the motion will di�er aordingly inboth speed and diretion. If, for point λ, the funtions of time are A, B andC, then the pressure will be p = C−z−AA−BB−CC−2xdA
dt
−2y dB

dt
−2z dC

dt
.3474. [n=2.℄ The third formula S = Axx+Byy+Czz+2Dxy+2Exz+2Fyzwith A + B + C = 0 will yield three veloity omponents at the point λ :35u = 3Ax + 2Dy + 2Ez; v = 2By + 2Dx + 2Fz; w = 2Cz + 2Ex + 2Fy, or

w = 2Ex + 2Fy − 2(A + B)z. In this ase, at any moment in time di�erentpoints in the �uid will be arried in di�erent motions. At the next moment intime, moreover, the motion of eah point an be variable in any way, beausethe funtions for A, B, C, D, E, F an be of any sort. Even more variety anour if omposite funtions are used for S.75. [Investigating the possibility of a ommon rotation.℄ In the seond ase, themotion of the �uid will oinide with the uniform motion of a solid body, soat any moment in time the di�erent parts of the �uid will be arried in anequal and parallel motion. We might suspet that the motion of the �uidin other ases an also oinide with the motion of a solid body, whetherrotational or of some other sort. For this to happen, the pyramid πφρσ must Tab. IV,Fig. 2.34The original reads: p = C − z − AA − CC − 2xdA

dt
− 2y dB

dt
− z dC

dt
.35The orginal has α instead of u. 50



neessarily be equal and similar to the pyramid λµνo; that is, taking overthe values shown in paragraph 32,36
πΦ = λµ = dx =

√
QQ + qq + ΦΦ

πρ = λν = dy =
√

RR + rr + ρρ

πσ = λo = dz =
√

SS + ss + σσ

Φρ = µν =
√

dx2 + dy2 =
√

(Q − R)2 + (q − r)2 + (Φ − ρ)2

Φσ = µo =
√

dx2 + dz2 =
√

(Q − S)2 + (q − s)2 + (Φ − σ)2

ρσ = ro =
√

dy2 + dz2 =
√

(R − S)2 + (r − s)2 + (ρ − σ)2.76. On omparison with the three �rst equations, the three last equationsredue to these:
QR + qr + Φρ = 0;

QS + qs + Φσ = 0;

RS + rs + ρσ = 0.If however we substitute for Q, R, S, q, r, s, Φ, ρ, σ the values assigned in36Again, with the same letters doubly used as unrelated labels and distanes. See alsothe omments to paragraphs 75-77 at the end of this doument.
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paragraph 34, then the �rst three equations [of the previous paragraph℄ will give:
1 = 1 + 2Ldt; l + M = 0

1 = 1 + 2mdt; λ + N = 0

1 = 1 + 2νdt; µ + n = 0from whih we would onlude that L = 0, m = 0, and ν = 0, M = −l,

N = −λ and n = −µ.77. The three veloity omponents at eah point λ would therefore be soonstituted that37
du = + ldy + λdz

dv = − ldx + µdz

dw = − λdx − µdy.Now the seond ondition on the �uid motion demands that l = M, λ = Nand n = µ. Then these all vanish, and the veloity omponents u, v and wwill be the same in all parts of the �uid at any given time. It is thereforelear that the �uid motion annot oinide with the motion of a rigid bodyin this ase.37Some minus signs were missing in the original.
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78. To determine the ontribution of the fores whih at externally onthe �uid, we ought �rst to �nd the fore needed to produe any spei�ed�uid motion. We found in paragraph 56 that these are equal to the three a-elerative fores reorded there. If we onsider a �uid element whose volumeor mass is = dxdydz, the motive fores required are therefore:38
AL : = 2dxdydz(Lu + lv + λw + L) = 2dxdydz (uux + vuy + wuz + ut)

AB : = 2dxdydz (Mu + mv + µw + M) = 2dxdydz (uvx + vvy + wvz + vt)

AC : = 2dxdydz (Nu + nv + νw + N ) = 2dxdydz (uwx + vwy + wwz + wt)and triple integration gives the total fores that ought to be applied on thewhole mass of �uid in eah diretion.79. Aording to the seond ondition the form udx + vdy + wdz is tobe a omplete di�erential, whose integral is = S. With time also variable,we are to set dS = udx + vdy + wdz + Udt. Then, from du/dy = dv/dx;

du/dz = dw/dx; du/dt = dU/dx et., those three motive fores beome:
AL := 2dxdydz

udu + vdv + wdw + dU

dx
,38For the sake of legibility, I have resorted to subsripts here, writing for example ux inplae of du

dx
.
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AB := 2dxdydz
udu + vdv + wdw + dU

dy
,

AC := 2dxdydz
udu + vdv + wdw + dU

dz
.80. Let now uu+vv+ww+2U = T, T being a funtion of the oordinatesx, y, z.39 For a �xed point in time, we an write40

dT = Kdx + kdy + κdzand the three motive fores of the element dxdydz are
AL : = Kdxdydz

AB : = kdxdydz

AC : = κdxdydz.Upon triple integration, these formulae extend to the whole �uid mass. Fromthese, we obtain equivalent41 expressions for fores, and their average dire-tions, that may be used everywhere. But this involves a truly higher level ofdi�ulty, and I shall not dwell further on this topi.39See omments for this and the following paragraph, at the end of the doument.40The typesetter misread κ, replaing it with u here and with k further down.41Equivalent to the expressions written out in paragraph 78.54



81. This quantity T = uu+vv+ww+2U introdued here yields a simplerformula for the equivalent depth p that gives the pressure; it is p = C−z−T,as long as eah �uid partile is ated upon only by gravity. If however anypartile λ is subjeted to aelerative fores whose omponents along thediretions AF, AB, and AC are respetively Q, q and Φ, then a similaralulation gives the pressure as
p = C +

∫

(Qdx + qdy + Φdz) − T.It is lear then that Qdx + qdy + Φdz must be a omplete di�erential, to beompatible with a state of equilibrium. The elebrated Monsieur Clairauthas indeed shown with great larity that suh a ondition must be imposedon the fore omponents Q, q and Φ.82. [Appliation to hydrostatis and hydraulis.℄ At �rst glane the priniplesof the general theory of �uid motion did not seem very fruitful, yet almosteverything that is known about hydraulis and hydrostatis is ontained inthem, so it must be allowed that these priniples have a very broad reah. Tosee this more learly, it will be worth while to show exatly how the knownpreepts of hydrostatis and hydraulis follow in a lear and straight-forwardmanner from the priniples developed so far.
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83. Let us therefore onsider �rst a �uid at rest, so that u = 0, v = 0 and
w = 0. Sine then T = 2U, the pressure at any �uid partile λ will be

p = C +

∫

(Qdx + qdy + Φdz) − 2U.Sine U is a funtion of time t, whih we take �xed, we an fold this quantity
U into the onstant C, so that

p = C +

∫

(Qdx + qdy + Φdz) ,where Q, q and Φ are the fores ating on the �uid partile λ in the diretionof the axes AL, AB and AC respetively.84. Sine now42 the pressure p is a funtion of the position of λ, that is,of the oordinates x, y and z, then the form ∫

(Qdx + qdy + Φdz) must bea de�nite integral funtion of these oordinates. Then it is lear, using thesame sort of argument as above, that the �uid ould not be in equilibriumunless the fores ating on the individual �uid elements are so onstitutedthat Qdx + qdy + Φdz be a omplete di�erential. If we set its integral = P,then the pressure at the point λ will be p = C +P. If the only fore is gravityating in the diretion of CA, then p = C − z. If the pressure at one point λis spei�ed, thus giving the onstant C, then, for that one moment in time,the pressure at all other points will be ompletely determined.42For a �xed moment in time. 56



85. With the passage of time, the pressure at eah position an hange.This will surely happen if the external fores ating on the �uid are variable,as these are not restrited exept that they remain in equilibrium and do notprodue �uid motion. On the other hand, if these fores do not su�er anyhange, then the literal C atually does signify a true onstant independentof time, and in that position λ the same pressure p = C + P will always befound.86. [Free surfae.℄ In a permanent state, the �uid's boundary an be deter-mined if the boundary is not subjeted to any fore. In a vessel, on the freesurfae43 where the �uid is not on�ned by walls of the vessel, the pressuremust neesarily be zero. Then the equation will be P =onst., and theshape of the free surfae is thereby expressed as a relation among the threeoordinates x, y and z. At the free surfae we may set P = E, C = −E; andfor any internal point λ the pressure will be p = P −E. If the �uid elementsare subjet only to gravity, so that p = C−z, then at the free surfae we shallhave z = C, from whih we may onlude that the free surfae is horizontal.87. [Flow through narrow tubes.℄ Finally, onerning �ows through tubes,everything that has been teased out by various means are easily deduedfrom these priniples. The tubes are usually taken to be very narrow, or43In this paragraph, Euler uses the terms �extrema �gura�, �extremitas�, �extrema su-per�ies�, and other ombinations of these words, not using the same phrase twie. Helands �nally at �extrema super�ies libera�. I have translated all these terms with themodern term �free surfae�. 57



else the �ow is assumed to be uniform aross any normal ross-setion of thetube. From these assumptions arose the rule that the speed of the �uid atany position in the tube is inversely proportional to the area of the ross-setion. So let the shape of the tube be expressed by two equations among Tab. IVFig. 2.the three oordinates x, y and z ; so that for any value of the absissa x, theother two oordinates y and z an be de�ned. Let also λ be any point of thetube.4488. Let moreover the area of the ross-setion at λ be = rr, and at another�xed position of the tube let the area be = ff, while the speed is = ◦̆,45 whihafter an in�nitesimal time dt beomes ◦̆ + d◦̆. Thus ◦̆ will be a funtion oftime t, as will be d◦̆/dt. The veloity of the �uid at point λ at the urrenttime will be V = ff ◦̆/rr. From the shape of the tube, y and z are givenin terms of x, so that dy = ηdx and dz = θdx; whene the three veloityomponents at λ in the diretions of AL, AB and AC are respetively46:
u =

ff ◦̆
rr

1√
1 + ηη + θθ

;

v =
ff ◦̆
rr

η√
1 + ηη + θθ

;

w =
ff ◦̆
rr

θ√
1 + ηη + θθ

;44The marginal note refers to Figure 2, whose re-use is a bit of a streth. Or did Eulerlift this passage from another manusript whih ontained additional �gures?45Euler used the astronomial symbol whose teX ode is �\taurus�. One is bound tohave strong feelings about using suh a symbol. Printing di�ulties have fored me tosubstitute the makeshift ◦̆. The ombination ff ◦̆ is the mass �ux.46These are the speed V times the diretion osines.58



so that uu + vv + ww = V V = f 4◦̆◦̆/r4. The term rr is a funtion of x aswell as the dependent variables y and z.89. Sine udx + vdy + wdz is a omplete di�erential and we an take itsintegral to be = S, there results:
dS =

ff ◦̆
rr

dx (1 + ηη + θθ)√
1 + ηη + θθ

=
ff ◦̆
rr

dx
√

1 + ηη + θθ.But dx
√

1 + ηη + θθ represents the element47 of the tube. If we write thisas = ds, then dS = ff ◦̆ds
rr

. For a �xed time t, this is a funtion of ◦̆. Sinehowever s and rr do not depend on the time t, but only on the shape of thetube, it follows that S = ◦̆
∫

ffds
rr

.90. To �nd the pressure p whih obtains at the point λ in the tube, wemust onsider the quantity U arising from di�erentiating S when only thetime t is variable � that is, suh that U = dS/dt. Sine the integral form ∫

ffds
rrdoes not involve the time t, the di�erential will be dS/dt = U = d◦̆

dt

∫

ffds
rr

;and then, from paragraph 80,
T =

f 4◦̆◦̆
r4

+
2d◦̆
dt

∫

ffds

rr
.For any posited fores Q, q and φ ating on the �uid, the orresponding47ar-length. 59



pressure at the point λ will be:
p = C +

∫

(Qdx + qdy + Φdz) − f 4◦̆◦̆
r4

− 2d◦̆
dt

∫

ffds

rr
.This is the formula that was to be extrated for �uid motion through a tube.Sine we allowed any sort of fores ating on the �uid [in this derivation℄, it willhold all the more so when the only fore is gravity. It is well to reall that thefores Q, q and Φ had to be so onstituted that the form Qdx + qdy + Φdzbe a omplete di�erential, i.e., that it be integrable.Expliit dissertatio de prinipiis motus �uidorum autore Leon. Eulero.
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Appendix: Table IV
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Translator's ommentsI �nd that Euler's Latin is in general very preise. Almost all obsurities in hismeaning or ambiguities in his equations an be resolved after areful parsingof his language. The following omments on individual paragraphs are meantto help the reader relate Euler's disoveries to modern treatments of invisidinompressible �uids. This requires us to take advantage of mathematialonepts developed after his time.Truesdell gives further disussion, extensive and illuminating, in his massiveommentaries for the various parts of Euleri Opera Omnia XII.Paragraph 17: At this stage, using the determinant formula for the area ofa triangle as it appears in high-shool texts would immediately give the areaas
1

2
·

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 0 1

dx + Ldxdt Mdxdt 1

ldydt dy + mdydt 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣whih = 1

2
dxdy + 1

2
(L + m)dxdydt + 1

2
(Lm − lM)dxdydtdt and we an thenonlude that 0 = L+m = ∂u/∂x+ ∂v/∂y. Euler is showing how to get thisdeterminantal formula.Paragraph 47: The solution given by Euler says that the url of veloity iszero: the �ow is irrotational. The ondition that udx + vdy be a ompletedi�erential= dΦ, for some potential funtion Φ, ombined with the ontinuityequation, implies that the potential funtion Φ is harmoni.62



How did Euler sneak in the assumption of irrotational �ow? Note that theontinuity equation gives L + m = 0. The rest of the partial di�erentialequation says that the material derivative of l − M vanishes:
d

dt

(

∂u

∂y
− ∂v

∂x

)

=
d

dt
ξ = 0,

ξ being the vortiity. Euler then adopts ξ = 0 as the solution, thus singlingout irrotational �ow. Of ourse there are other solutions. What Euler hasdone is to show rigorously that irrotaional �ow is a valid solution. The wholeargument glows with the exitement of disovery of a method.Paragraph 60: The quantities l − M, λ − N, µ − n are the omponentsof vortiity ξ = ∇×U, exept for order and sign. In modern vetor notation,we would write the equations as
Dξ

Dt
− ξ · ∇U + [∇ · U]ξ = 0,where D/Dt is the material derivative. Euler's solution says that the ompo-nents of the vortiity are all zero, i.e., the �ow is irrotational. There are ofourse other solutions, just as there were in the planar ase of paragraph 47.Euler did ome to understand that the irrotational ase was only a speialsolution of the general problem. He had given it up by the time of his didatitreatise [E396℄ �Setio Seunda de Prinipiis Motus Fluidorum� [Novi om-mentarii aademiae sientiarum Petropolitanae 14 (1769, published 1770)℄.63



Consider now an inompressible �uid. If we let S be the symmetri part of
∇U, i.e.

S =
1

2

{

[∇U] + [∇U]T
}

,then ξ ·∇U = Sξ. Furthermore, the trae of S is 0. Thus, for an inompress-ible �uid, the vortiity equation beomes
Dξ

Dt
= Sξ,where the symmetri matrix S has at least one positive eigenvalue. Thisraises issues about the stability of the solution. These issues are amelioratedsomewhat by the fat that in planar motion the eigenvetor orresponding tothe most negative eigenvalue is parallel to vortiity. In many other ases thelargest positive eigenvalue an still be expeted to have little e�et. It maybe that the supreme virtuoso of analyti manipulation had gone far enoughto satisfy himself that the obvious solution l −M = λ −N = µ− n = 0 wasat least reasonable.Paragraph 70: In the ondition in rule III: A + B + C = 0, the three om-ponents are the AA, BB, CC of paragraph 69. The A, B, C... of thisurrent paragraph are now real numbers.For the general solution of Laplae's equation following Euler's line of reason-ing, see setion 18.3 in Whittaker and Watson's Course of Modern Analysis.Paragraphs 75-77: As Truesdell remarks, Euler fails to aount here for all64



seond order terms and so misleads himself into �proving� that there an beno rotational �uid motion oiniding with the motion of a solid body. Indeed,there is a ertain sloppiness in the passage. But mistakes by the residents ofOlympus help us mortals understand how they think.Paragraph 80: The aim of this paragraph is to establish an aleration po-tential T whose spatial derivatives are the �motive fores� written out inparagraph 78.Paragraph 81: For a well-de�ned pressure, the expression
p = C +

∫

(Qdx + qdy + Φdz) − Tneeds to be a funtion of position independent of the path of the integral,and so Qdx + qdy + Φdz must be a omplete di�erential. Euler has thusestablished the neessity, at least loally. He �nishes the sentene howeverwith �alioquin status aequilibrii, vel saltem possibilis, non daretur � � �other-wise, a state of equilibrium, or at least a possible one, would not be given.�He seems to say that any fore �eld under onsideration must be ompatiblewith some possible equilibrium state. He may have d'Alembert's priniple inmind. That priniple, however, applies loally, and Euler is seeking a globalondition. Truesdell points out that there are winding number issues thatneed a more areful analysis for resolution.Paragraphs 88-90: this �nal setion is breath-taking.65


