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 When we read about Euler, or about any other historical figure, we must remember 
that he lived in his own times.  The 18th century was very different from the 21st in ways that 
we hardly ever think about.  There are the obvious differences; now we have Internet, iPods, 
airplanes and automobiles.  I am fond of reminding my students that we also have indoor 
plumbing, grocery stores and paper money.  So, when we read Euler, we must try to 
understand how the problems he works on and the techniques he uses are embedded in his 
own times, and not in ours.  He was speaking to and writing for an 18th century audience and 
we are lucky that the things he was saying are still useful and interesting today.  So, when we 
find Euler seeming to use 17th century techniques to solve a 19th century problem, we might 
raise an eyebrow. 
 
 Euler’s paper Geometrica et sphaerica 
quaedam, [E749] which translates uninformatively as 
“Certain geometric and spheric things,” is such a 
paper.  Its main result is a theorem in triangle 
geometry, a subject that was extremely popular and 
important in the late 19th century.  The main results in 
triangle geometry are summarized in excellent books 
like that of Coxeter and Greitzer [C+G].  
 
 In contrast, one of the major mathematical 
themes of Euler’s era was the gradual evolution, led 
by Euler himself, from a mathematics based on 
techniques and objects of geometry to one based on 
algebra and analysis.  Though this is not the place to 
dwell too much on this point, we note that at the 
beginning of the 18th century, mathematicians called 
themselves “geometers” and they used calculus to 
study curves, in the style of L’Hôpital.  By the end of 
the century, they called themselves “mathematicians” 
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and “analysts” and used calculus to study functions.  In E749, Euler gives three proofs of a 
19th century result, but his third proof, clearly his favorite of the three, is a proof with a 17th 
century flavor.   
 
 Euler apparently wrote E749 in 1780.  Euler’s son-in-law Nicolas Fuss, presented it 
to the Academy in St. Petersburg, along with three other papers, on May 1 of that year.  In 
1780, Euler was 73 years old and he no longer attended the meetings of the Academy 
himself.  Euler’s last meeting seems to have been on January 16, 1777, after which Euler sent 
his papers in to the Academy with his assistants.  In 1780, Euler had been blind for almost 15 
years, and he had a team of assistants to whom he dictated hundreds of manuscripts.  One of 
the portraits of Euler, shown above, has a sub-portrait, a smaller rectangle beneath the oval of 
the main portrait. The sub-portrait shows two men, one with pen and paper, sitting at a table.  
Apparently it pictures Euler dictating to one of his assistants, probably his son, Johan 
Albrecht, because Euler himself could no longer read or write. 
 
 Let us turn to the mathematics.  Euler gives us the triangle ∆ABC shown in Fig. 1, cut 
by concurrent segments Aa, Bb and Cc, where points given by lower case letters are on the 
sides opposite the vertices given by the upper case letters.  Note that the point where the 
segments intersect is named O.  Euler asks, 
given the lengths of the segments AO, Oa, BO, 
Ob, CO and Oc, can he reconstruct the 
triangle?   
 
 He finds that there will not be such a 
triangle unless certain conditions on the ratios 
of the lengths of the segments are satisfied, 
and gives us the following: 
 
Theorem:  If in any triangle ABC are drawn 
from each angle to the opposite side any straight lines Aa, Bb, Cc cutting each other at a 
common point O, then they will always satisfy this property, that 
 

 (1) 2
AO BO CO AO BO CO
Oa Ob Oc Oa Ob Oc

⋅ ⋅ = + + +  

 
 Euler’s proof is rather long and not very elegant.  We debated omitting it but 
eventually decided to include it so that later we could admire how much more elegant his 
third proof turns out. 
 
Proof: Take AO=A, BO=B, CO=C, Oa=a, Ob=b, Oc=c and label the six angles around O as 
shown.  Note that p + q + r = 180°.  As was typical in his times, Euler expects us to be able 
to use context to distinguish the points A, B, C, a, b and c from the lengths with the same 
names. 
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 We can find the area of ∆AOc to be 
1

sin
2

AOc Ac q∆ = .  Similarly, 

1
sin

2
BOc Bc p∆ =  and ( )1

sin
2

AOB AB p q∆ = + . 

 Since ( )sin sinp q r+ = , and since the areas of the first two triangles sum to the third, 
we get: 
 

sin sin sinAB r Ac q Bc p= + . 
 
Similarly, for the other two pairs of triangles, we get 
 

sin sin sin
sin sin sin

BC p Ba r Ca q
CA q Cb p Ab r

= +
= +

 

 
 Dividing these equations by ABc, aBC and AbC respectively gives 
 

(2) 

sin sin sin

sin sin sin

sin sin sin

r q p
c B A

p r q
a C B

q p r
b A C

= +

= +

= +

 

 
 Euler pauses to point out the pattern in these three equations. 
 

Define α, β  and γ by the equations , ,A a B b C cα β γ= = =  and then define P, Q, R 
by the equations 
 

(3) 

sin sin

sin sin

sin sin

p p
P

A a
q q

Q
B b

r r
R

C c

α

β

γ

= =

= =

= =

 

 
 Then the three formulas in (2) transform into 
 

, ,R P Q P Q R Q R Pγ α β= + = + = +  
 This gives us the ratios 
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: 1: 1
: 1: 1
: 1: 1

P R
Q P
R P

γ α
α β
β γ

= + +
= + +
= + +

 

 
This has a nice pattern, too.  From this we get the triple proportion 
 

(4) 
1 1 1

: : : :
1 1 1

P Q R
α β γ

=
+ + +

 

 
though, to the modern eye, that doesn’t look like a very convenient way to write anything. 
 

Now, the first of our three equations in (3) gives 
 

P Q
R

γ
+

= . 

 
From the second equation we get R P Qα= − .  Put these two values into the ratio between P 
and Q given in (4) and we get  

1
1

P
Q

γ
αγ

+
=

−
 . 

 Since also 
1
1

P
Q

β
α

+
=

+
, all this multiplies out  to give 

 
2αβγ α β γ= + + + . 

 
 Substituting back the triangle measurements for the Greek letters gives the result of 
the theorem. 

 
QED 

  
Here is an example of how we might be misled by reading an old theorem with 

modern eyes.  Now we think of this theorem and the corollaries that we will see below as 
properties of triangles.  That’s not what Euler had in mind, though.  This theorem gives a 
necessary property that the lengths of the six given segments must satisfy in order for him to 
solve the problem of finding the triangle that gives rise to those six lengths.  That is to say, he 
still wants to solve the following: 
 
Problem: Given that the parts of a triangle are lengths A, B, C, a, b, c as described 
above, to construct the triangle. 
 
 Euler’s solution is two full pages long, and it is extremely analytical and non-
geometrical.  He even commits the “heresy of Heron and Brahmagupta” and uses 
calculations that involve square roots of fourth powers to find areas.  Orthodox geometers 
objected to such calculations because fourth powers had no “real” geometric interpretation.  
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At this point in the paper, though, Euler is being true to his 18th century context, and uses 
fourth powers in geometry without agonizing over interpretation. 
 
 Having given an clunky proof to a somewhat awkwardly worded theorem, and used it 
to give a solution to a problem that holds little interest today, Euler spots a gem, and writes 
“the following most elegant consequence can now be stated:” 
 
Theorem: In an arbitrary triangle ABC, draw from each angle A, B and C to a point on its 
opposite side straight lines Aa, Bb and Cc so that the three segments intersect at some point 
O.  Then the segments always have the property that 
 

1
Oa Ob Oc
Aa Bb Cc

+ + = . 

 
Proof follows from the previous theorem: 
 
 As above, take , ,AO Oa BO Ob CO Ocα β γ= ⋅ = ⋅ = ⋅ .  The previous theorem gives 
that 
 

2αβγ α β γ= + + + . 
 
Add 1αβ αγ βγ α β γ+ + + + + +  to both sides.  Then the left hand side factors to give  

 
( )( ) ( )1 1 1α β γ+ + + , 

 
and the right hand side can be written as 

( )2 3αβ αγ βγ α β γ+ + + + + + . 
This last “obviously” [Euler’s word] resolves to give 
 

( ) ( ) ( ) ( ) ( )( )1 1 1 1 1 1α β α γ β γ+ + + + + + + + . 
 
Now, dividing both sides by the product  
 

( )( ) ( )1 1 1α β γ+ + +  
gives us 

1
1 1 1

α β γ
α β γ

= + +
+ + +

. 

 
QED 

 
Euler tells us that he’s done with the proof even though this last formula is only 

equivalent to what we were trying to prove, after substituting geometric segments for the 
Greek letters. 
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This theorem is the starting point for a recent article by Grünbaum and Klamkin. 
[G+K] They show, among other things, that the analogous sum of ratios also holds for 
tetrahedral, as well as for higher dimensional simplices. They correctly credit Euler for this 
result in two dimensions, but they neglect to notice that Euler also proved the two 
dimensional version of their Theorem 1 (ii).  Euler doesn’t put this particular result in the 
form of a theorem, but instead writes: 
 

“Here is how the following memorable property can be derived: 
 

2
1 1 1

α β γ
α β γ

+ + =
+ + +

. 

 
If this is added to the previous equation, it gives the following identity: 
 

1+1+1 = 3.” 
 

Perhaps we should name this last equation the “Euler identity”? 1 
 

 Note that Euler’s three results so far, 2
1 1 1

α β γ
α β γ

+ + =
+ + +

, 1
1 1 1

α β γ
α β γ

= + +
+ + +

 

and 2αβγ α β γ= + + +  are algebraically equivalent.  If we have a proof of any one of them, 
then the other two follow with just a little bit of algebra. 
 
 This seems like it would have been a fine place to stop this paper.  Perhaps Euler even 
did stop here, because he continues with a proof of this last result that is so much nicer than 
the one he gave above that it seems like, if he’d known it when he was writing the earlier part 
of the paper, he would have used this proof instead.  Or perhaps he came back to the paper 
later and added this part in.  Regardless, he next gives us what he calls a “Most simple proof, 
based on ordinary elements.”  By this he means that he is going to use mostly geometry 
instead of mostly algebra to prove  
 

1
1 1 1

α β γ
α β γ

+ + =
+ + +

 

 
 Euler uses a new figure (Fig. 
2), and some new notation, and 
some new lines in his figure.  
 

Through O, he draws 
segments parallel to each of the 
three sides of ∆ABC.  The segment 
fζ  is parallel to BC, gη is parallel to 
AC and hθ is parallel to AB.   

                                                                 
1 Joe Gallian take note.  Do you think maybe the Beatles got their lyric “one and one and one is three” from this 
Euler paper? 
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With this notation, Euler writes the property he plans to prove in the form 
 

1
Oa Ob Oc
Aa Bb Cc

+ + = . 

 
He begins his proof writing that since AB = Aη +ηf + fB, we have  
 

(5) 1
Bf A f
AB AB AB

η η
+ + = . 

 
 Now, since ∆ABa is similar to ∆AfO, we get : :Bf BA Oa Aa= , or, as fractions,  
 

(6) 
Oa Bf
Aa BA

= . 

 
 Save this to substitute into (5). 
 

 Likewise from ~BAb B Oη∆ ∆  we get another ratio that makes  
 

(7) 
A Ob
AB Bb

η
=  . 

 

The third of the similar triangles gives, in the same way 
f fO
AB BC

η
= . 

 Now, by parallel lines, fO Bθ=  and also ~BCc COθ∆ ∆  so we get 
B Oc
BC Cc

θ
= . That 

makes 

(8) 
f Oc
BA Cc

η
= . 

 Now we substitute formulas (6), (7) and (8) into the identity (5)  1
Bf A f
AB AB AB

η η
+ + =  

and it gives our theorem 

1
Oa Ob Oc
Aa Bb Cc

+ + = . 

QED 
 
Euler adds that this property even holds if the point O is taken to be outside the 

triangle, as shown in Figure 3.  Homer White, in footnotes to his translation of E749 
(available on The Euler Archive) describes Euler’s explanation of this property as “quite 
unclear.”  White also observes that the version of Figure 3 given in the Opera Omnia 
contains an error, reversing the labels on the points C and c.  As we can see in our version of 
Figure 3, the points were correctly labeled in the original. 
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 In typical Eulerian fashion, Euler proves that similar relations hold on coincident 
segments drawn across spherical triangles, as shown in 
Figure 4. He also shows how to solve his Problem for 
spherical triangles.  These calculations closely resemble 
the calculations we saw early in the paper, reinforcing 
the hypothesis that the “most simple proof based on 
ordinary elements” may have been added later. 
  
 Whether or not that part was interpolated, the last 
part of this paper was clearly added later than the rest of 
the paper.  Euler labels it “SUPPLEMENT Containing 
the simplest analysis for the proof of the theorem and for the solution of the problem 
proposed before.” 
 

 Euler means to prove his theorem in the form 1
Oa Ob Oc
Aa Bb Cc

+ + =  
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For his proof, Euler uses Fig. 5, a simpler 

version of Fig. 2.  Rather than add line segments 
parallel to all three sides, he adds only two shorter 
line segments, both from point O to points on side 
BC.  Segment Oβ  is parallel to side AB and 
segment Oγ is parallel to AC.  Obviously, 
 

Bβ  + βγ + γC = BC, 
 
so 
 

(9) 1
B C
BC BC BC

β βγ γ
+ + =  

 Now we use three pairs of similar triangles.  ∆BCb~∆BγO  so 
C Ob
BC Bb

γ
= .  Likewise 

∆CBc~∆CβO so 
B Oc
BC Cc

β
= .  Finally, ∆βOγ~∆BAC, so 

Oa
BC Aa
βγ

= .  Substitute these three 

fractions into (9), and immediately we get 

1
Oa Ob Oc
Aa Bb Cc

+ + = . 

QED 
 
 Euler is clearly proud of this proof and writes that “this is, without a doubt, the 
shortest proof of this theorem, but it was dug up in a most roundabout way.” 
 
 He wraps up his paper with a not-quite-as-brief solution to his problem of finding the 
triangle given the segments.  We note that, for this part, the illustration in the Opera Omnia 
again contains an error that was not present in the original. 
 
 So we reach the end of Euler’s last published paper in Euclidean geometry.  Because 
Euler didn’t have the extra time to revise and polish this paper (he died just three years after 
writing it, and his SUPPLEMENT may have been added substantially closer to his death) he 
didn’t “erase his tracks.”  Thus it gives us a glimpse of how Euler discovered things as he 
wrote a paper and how he came back later to improve his solutions. 
 
 It also shows how Euler, though nicknamed by one of his contemporaries Analysis 
incarnate, still had a flair for ordinary geometry and, though blind himself, still had an eye 
for a beautiful proof. 
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