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Imagine my surprise when | waslooking at Euler’s Calculi differentialis. [E212] There, deep
into part 2 (the part that John Blanton has't trandated yet), | saw the odd title of chapter 16, De
differentiatione functionum inexplicabilium, “ On the differentiation of inexplicable functions” That
made me curious. What was an “inexplicable function?’

In the nine chapters of part 1, Euler had taught us how to take derivatives of polynomids, of
agebraic functions, of transcendentd functions, to take higher derivatives, and to solve certain kinds of
differential equations. Part 2 is about twice aslong as part 1, both in number of pages (278 vs 602) and
number of chapters (18 vs 9). The firgt nine chapters of part 2 mogtly involve series. Chapters 10 to 13
are about gpplications of caculus to finding maxima and minima and to finding roots of equations, and
the last five chapters seem to be akind of grab bag of applications like interpolation and partia
fractions. Inexplicable functions are in that grab bag.

Though he defines inexplicable functions as those that are neither algebraic nor transcendental,
he doesn't have avery complete idea of what a transcendental function is, and he has only two kinds of
examples of inexplicable functions. He might as well have defined inexplicable functions as being
functions that are like his examples.

Both of his examples come out of the work on the interpolation of sequences that he presented in
his letter to Goldbach of October 13, 1729. That work led to the results on the gamma function and the
congtant gammathat we have described in the last two columns.

Euler sfirg example generdizes the partid sums of the harmonic series. In this paper he cdls
al of hisinexplicable functions S but we'll cal this particular one H(x) and write it as

H (X) =1 +l+£+...+1,
2 3 X

where x is not necessarily awhole number. Even though Euler had shown in 1729 [E20] that this could
be defined as a definite integral




H(x):c‘ill__i:dx,

he tdls us here that this function “can not be explained in any way.” Thisis probably because the
Calculi differentialis was designed as a textbook, and its only prerequisite was his Introductio in
analysin infinitorum. He did not expect that readers would know aresult from a twenty-five year old
research paper.

Euleraisoconsidersrelatedsumslike1+1+1 FE IR and 1+in+in+in+---+i,
3 57 2x-1 2" 3 4 X'

where, again, X is not necessarily an integer.

It should be no surprise that Euler’s second class of examples generaizes the factorid function.
It isn't quite the gamma function, because the gamma function is a shift of the factorid function
G(n+1 = n!. Euler denoted thisby Saswell, but we'll cdl hisverson F(x). (F isfor factorial, aword

that was not used in Euler' stime)) Euler’s definition amounts to

F(x)=12x3%4-- X,

where, again, X need not be awhole number. He aso considers products like %XZXZ% o 2)2(_ 1, and a
X

couple of other examples built out of histwo basic kinds of inexplicable functions. Hisfifth exampleis
to differentiate our F(x). It follows three examples based on sums and the one based on products.

Euler had to work without the benefits of subscript notations, which would not become popular
for another 50 years, so much of his notation here will seem quite awkward. He took

S=A+B+C+D+ ...+ X

where X isthe vaue of the x-th term of the summation. Here, x is dlowed to be afraction, and for the
generdized harmonic function, X = %( . Hedenotesby X', X'’, X'’, etc., the vdues of the (x+ 1)-4t,

(x+2)-nd, (x+3)-rd, etc., and he denotes the “term at infinity” by X' . Then he writes successive sums as

S'=5+X'

S"=S+ X'+ X"

S"=S+ X'+ X"+ X" and findlly
S¥H=S+ X'+ X "+ X"+ XFL

We take w to be an infinitely smal number. Then, to take the derivative of the sum givenby S,
Euler wants to compare the sum of thefirst x termsto S, the sum of thefirg x + w terms. Much like he
did with the Ss and the Xs, he takes Z to be the term corresponding to x + w, and cals successve terms

Z,2’, 7", adtheterm at infinity Z¥'. Continuing his anaogy between S and S, he writes

S'=S+27’
S"=S+Z'+S"
S"=S+2'+2"+Z", adfindly



SM=S+Z'+Z"+Z" -+ ZM,
Euler is not explicitly concerned with whether the seriesthat give S*! and S converge. In fact,

he knows that they diverge, but he is concerned with how they diverge. Hetells us, “Now, the nature of
thesaries S, S', S*, S™, éc., whenit is continued to infinity, will be like an arithmetic progresson if

the sequence of terms X, X', X", X™, ec. convergeswhen it is continued to infinity.”

That's not very clear, but it meansthat iflim X" = b, then the sequence XM, X¥* X¥*2 e,

islike an arithmetic sequence with difference b.

Euler denotes the value to which the Xs converge by X**1, and daims that S*! = S¥™I. Further,
S ought to lie naturally between S¥ and S¥*1. Since, a infinity, the Xs form an arithmetic
sequence, Euler is comfortable interpolating S¥ ™, giving it the value

SHl = ¥l = gl X ¥
Euler gathers histoolsto get firgt that
SM=g¥" =g+ X'+ X"+ X"+ XF 4w X ¥
and then that
SM=S+Z'+Z"+Z" ...+ ZM.
Together, these last two equationsrelate S and S as
1) S=S+WwX¥H+ X +X"+X "+ - Z'-Z"-Z"- elC.

Moreover, if theterms X, X', X", X" go to zero, that isto say if X**¥ =0, then we get to
ignoretheterm wX ¥ * in this expression.

We can do this cdculation in the specid case of Euler’s generdized harmonic sum. Then we get

1 1 1
+= = .+
3 4 X

S=1

T

Euler rearrangesthe termsin hisformulafor S to get
S=S+(X'-Z") {X"-Z") {X"-Z") +etc,

Here, because X¥*™ =0, we can leave out the term wX ¥,



Furthermore,

X'= 1 7=t X' 7'= W

x+1 X+1+W (x+1)(x+1+w)
X"= 1 Z":—l X" Z"= W

X+2 X+2+W (x+2)(x+2+w)
X "= 1 Zm_ 1 X 7= w

X+3 X+3+w (x+3)(x+3+w)
etc. etc. etc.

In atransformation that seems to hold absolutely no hope of progress, Euler expands each of the

factors _ asaTaylor seriesto get
X+K+w

1 1 w W w?
- ) 2t N z Tec.,
x+1+w  x+1 (x+1)° (x+1) (x+1)

1 1w W

= - =+ = - 5 Heic., and so forth.
X+2+w  x+2 (x+2)° (x+2)° (x+2)

Findly, Euler subgtitutes these expansonsinfor X'- Z', X"- Z", ec. in hisexpresson for S,

subtracts S, subgtitutes dSfor S — S and substitutes dx for w to get hisfind, and rather disappointing
answer:

& 1 1 1 1 0

dS = dx =+ =+ S+ S +efC.+
1) (x+2f (x+3) (x+a)

& 1 1 1 1 0

- dx? + + + +ec+
B T T R T
+dx3ae 1 -+ 1 -+ 1 -+ 1 4+et(:_$
Sxr)) (x+2) (<43 (x+d) 5

& 1 1 1 1 0

- dx* =+ =+ =+ = +etc.t+etc.
Sx+1) (x+2F (x+3F (x+4 5

The basic idea here was to make the step from Sto S by usng theterms X', X", X", etc. to

count up to infinity, to make the step from X™ to Z¥! = X ¥ using the properties of the limit of the
Xs, and then to count back from infinity usng theterms Z°', Z", Z™, etc. Itisclever, but outrageous.

Aswe mentioned earlier, Euler does afew more examplesinterpolating sums of sequences,
including the specid series closdly rdaed to the Riemann zeta function:

S:1+in+in+i+-..+i_

4n Xn



Before he leads us on to inexplicable functions built from products rather than sums, Euler does
abit more analyssto help us understand what happensif theterms of S neither vanish nor converge to
some non-zero value. Formula (1) above describes the difference between Sand S if theterms

converge, and if they converge to zero, then we get to ignore the termw X ¥,

If the terms don’t converge, then things are considerably more complicated. Let uslook at the
specid case where the terms don’'t converge, but the difference between the terms does converge, as
happens, for example, with the sequence whose generd term isin x.

Consider three consecutive partiad sums“a infinity” that Euler would denote asS¥, S¥*
and S**2. Thar firgt differenceswill be S¥*- S¥ = X¥* gnd S**2- g**1 = X¥*4 Now we see that
the second differences will be X2 - X¥*! and we are assuming that this difference between the terms
does converge. Note that the difference between the termsiis the second difference between the partia
sums.

Now we compare S¥' to S¥ and get
SM = gl = Gl oy X ¥4 +W(W -1) (X'¥+2' ) X|¥+u)
12

From this, we get akind of second-difference analogue to Formula 1:

S=S+ X'+ X"+X "+ X "+elc.

w-1)

+WX|¥+u+W( (XM xF)
12

- Z'- 7" 7" 7™ dc

For X¥*¥, Euler subtitutes X +(X "~ X*) X" -X") {X™- X")+(X"™- X ™)+ etc., and for

XA X¥ hewrites X - X'+((X"'- 2X"+X) AX™-2X" X" AX™-2X ““+X'")+etc.). This
gives him the agtonishing but awkward formula,

S=S+ X +X "+ X" X " +efc.

FWX W (X XY H(X XY H XX )+ (X X )+ etc)

w(w- 1) . w(w- 1)
1 12

+W(W- 1)
12

- Z'- 27" 7" 2™ dc

2) + X'

(X ™ 2X"+X7) HX ™= 2X ™ X ) +(X ™ 2X ™ X ")+ etc)

Note that this gpplies to series for which the generd terms need not converge, but the difference
between consecutive terms do converge, andthat In1+In2+In3+ ... +In X isone such series.

Similar, but even more complicated formulas are possible for sums for which the second
differences or third differences of the generd terms converge.

5



Now we are ready to sketch how Euler took the derivative of his version of the gamma function,
the function we are writing as

F(x)=12x3%4---X.
First he takes logarithms of both sdes and gets
InF(x) =In1+In2+In3+In4+---+Inx

In this saries the terms do not vanish, but the differences between the terms do vanish. Euler
demondrates this with the following caculation:

In(¥ +1)- In(¥ :Ina?[+—;:—:o.
(¥ +2)- In(¥) =Inglr 0= 2

This gives Euler license to use his“astonishing but awkward” Formula (2). 1t seemsto lead to
mayhem as he subdtitutes dx for w and then replaces termslike X' — Z' with Taylor series
goproximations. Eventudly it smplifies abit and he gets

InF(x):xa?ng+ln§+ln£+ln§+etc.2
€1 2 3 4 g
el
3 @
+1x2%+i2+i2+ 12+etc.9
€) 2" € 203 o
138? 1 1 1 o}
- =X ol+t—=+—=+—+elCc.:
3 8 23 33 3 ﬂ
v 1 L e Oreac
4 8 47 34 g4 p
Note the first two series on the right. Thefirst series expands as
In2-In1+In3-1n2+In4- In3+In5- In4 +etc.
Thistelescopesto give

In1- In(n+1)=- In(n+1)

Meanwhile, the second seriesin Formula (3) is just the harmonic series. We know that as n goesto
infinity, the difference between the logarithm and the nth partiad sum of the harmonic series gpproaches

the Euler-Mascheroni constant, now denoted g. Euler knew this value to be gpproximately
0.5772156649015325, and he wrote it out like that rather than denoting it by a symbol. Wewill useg.
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As an additiona concession to modern notation, we'll dso note that the other series that appear
in Euler’s expression for In F (x) are values of the Riemann zeta function, and we'll do what Euler

couldn’t do and write them as z(2), z(3), z(4), etc. With these notetions, Euler’s expression for In F ()
can be written as

InF(x)=- >g+%xzz (2)- %ng (3) +%x“z (4) - etc.

Now for the climax. This differentiates to give

=-gdx+xz (2)dx- xz (3) dx+x% (4) - etc.

Taking x =0 so that F(0) = 0! =1, and thislast formula gives the derivative of the factorid
function in terms of the congtant gamma

or, in terms of the gamma function,
G@®=-g.

This ends the story that has extended over our last three columns. Euler discovered both objects,
gamma the function and gamma the constant, early in his career while working on problemsin the
“interpolation of functions’, that is, giving meaningful values to functions thet are initidly defined only
ontheintegers. Later, Euler showed that the derivative of the function a x = 1, is the negative of the
congtant. Though this result iswiddy known, it does not seem so well known that the result is due to
Euler. Findly, well after Euler’s death, the two different objects happed to be given the same name.

What aremarkable coincidence.
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