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 Triangles are one of the most basic objects in mathematics.  We have been studying them for 
thousands of years, and the study of triangles, Trigonometry, is, to some extent, a part of every 
mathematical curriculum.  Our oldest named theorem, the Pythagorean theorem, is about triangles, 
though the theorem was known long before Pythagoras.  It is probably our most famous and most often 
proved theorem as well.  Hundreds of different proofs are known, [Loomis 1940] and good writers still 
find interesting things to say about the theorem. [Maor 2007] 
 
 The particular branch of trigonometry where we ask that certain parts of the given triangle, sides, 
angles, medians, area, etc., is called rational trigonometry.  Though it originally arose from geometry, 
rational trigonometry is now usually classified as a part of number theory. 
 
 For example, for many people, the Pythagorean theorem is particularly interesting when we 
consider it as a problem in rational trigonometry and ask that the lengths of the sides of the triangle be 
whole numbers.  This is the problem of so-called Pythagorean triples, three whole numbers a, b and c 
satisfying 
 

a
2
+ b

2
= c

2 . 
 
 As we all know, the simplest such triple is (3,4,5).  It is easy to show that there are infinitely 
many such triples.  We can generate all we want by picking two positive integers, m and n, with m>n 
and letting 

a = 2mn

b = m
2
! n

2

c = m
2
+ n

2
.

 

 
 It is easy to check that for these values, indeed, a2 + b2 = c2 .  It is slightly less easy to check that 
if m and n are relatively prime, one odd and the other even, then a, b and c are pairwise relatively prime, 
so the method is not just generating infinitely many triangles similar to each other.  All Pythagorean 
triples can be generated in this way. 
 
 Another way to generate Pythagorean triples is apparently due to Ozanam.  He tells us to look at 
the sequence of rational numbers 
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Each of these numbers, written as an improper fraction, 
a

b
, gives two of the three numbers of a 

Pythagorean triple. We leave it to the reader to find why this is true. 
 
 Fibonacci also showed a way to find infinitely many different Pythagorean triples, but neither 
Fibonacci's nor Ozanam's method gives all of them.   
 
 It should be no surprise that Euler also worked in rational trigonometry.  He wrote about half a 
dozen papers on the subject, and our purpose in this column is to look at a sequence of four of them, 
giving better and better solutions to the same problem.  The first of those papers [E451] gives the 
problem right in its title, Solutio problematis de inveniendo triangulo, in quo rectae ex singulis angulis 
latera opposita bisecantes sint rationales, "Solution of the problem of finding a triangle in which the 
lengths of the straight lines drawn from each angle and bisecting the opposite sides are rational."  Euler 
neglects to mention that he means the sides of the triangle to be rational as well, nor that he means to 
multiply by the least common denominator and make all these measures integers instead of rational 
numbers.  Euler wrote this paper in 1773. 
 
 The other three papers, with their titles in English and the years that Euler wrote them, are 
 

E713 (1778) Investigation of a triangle in which the distance from the angles to its center of 
gravity is rationally expressed 

E732 (1779) An easier solution to the Diophontine problem about triangles, in which the straight 
lines from the angles to the midpoints of the opposite sides are rationally expressed 

E754 (1782) A problem in geometry solved by Diophantine analysis 
 
 The last of these was written in French.  The others were in Latin, though the second one, E713, 
has a short summary in French, which we quote below: 
 

 
 This article, which will give pleasure to the small number of amateurs in 
indeterminate analysis, contains a very beautiful solution to the problem stated in the 
title.  Here it is in just a few words.  Let the sides of the desired triangle be 2a, 2b, 2c, 
and let the straight lines be drawn from their midpoints to the opposite angles, 
respectively f, g, h.  Take as you please any two numbers q and r and find 

M =
5qq ! rr

4qq
 and N =

5rr ! 9qq

4rr
.  Reduce the fraction 

M ! N( )
2

! 4

4 M + N( )
 to its lowest 

terms, and name the numerator x and the denominator y.  Then you will have the side 
2a = 2qx + M ! N( )qy  and the line f = rx ! 1

2
M ! N( )ry .  Make p = x + y and s = x – 

y, and you will have the sides 2b = pr ! qs  and 2c = pr + qs  and the lines 

g =
3pq + rs

2
 and h =

3pq ! rs

2
. 

 
 

The summary shows that the spirit of Euler's solution is like that of the formulas above that give 
all the Pythagorean triples.  We get to choose two numbers, here q and r, with a few restrictions (like we 



  3 

don't want  M + N = 0, as stated in the text but not the summary.) Then the formulas give the solutions 
in terms of p and q.  As with the solution to the problem of the Pythagorean triples, it is easy to see that 
all the values, a, b, c, f, g and h, are indeed rational.  It is a bit more subtle and a good deal more tedious 
to check that these values f, g and h are the medians of the triangle with sides 2a, 2b and 2c.  Some of 
that will be evident from what follows. 

 
Note that Euler mentions that this paper "will give pleasure to the small number of amateurs in 

indeterminate analysis."  To Euler, "indeterminate analysis" is the practice of finding integer or rational 
solutions to algebraic equations, what we now call and Euler himself would later call Diophantine 
analysis.  He also mentions that he doesn't think that very many people will be interested, that there are 
only a "small number of amateurs."  I think he uses the word "amateurs" a bit differently than we use the 
same word today.  Now it means "people who are not professionals," but to Euler it meant "people who 
love the subject."  I hope we're all "amateurs" in Euler's sense of the word. 

 
We've seen Euler's beginning, the statement of the problem, and one of his answers.  Let's look a 

bit at his solutions, at some of the things he discovered along the way, and at why he felt the need to 
return to the problem to improve his solution. 

 
Euler begins the first of his papers, E451 with only the title as preamble and tells us that we 

should let the sides of the desired triangle be 2a, 2b and 2c and the lengths of the medians be f, g and h.  
Then we want to find rational solutions to the system of equations 

 
2bb + 2cc ! aa = ff

2cc + 2aa ! bb = gg

2aa + 2bb ! cc = hh

 

 
Euler calls these three equations his 

"fundamental equations" for this problem. 
 
He doesn't tell us here why these 

equations have anything to do with the 
problem, but in the second of the four 
papers, E713, perhaps he is being a bit 
more gentle on his "amateurs," for he gives 
us details and a diagram.  

 
Let ABC be a triangle, with midpoints F, G 
and H opposite A, B and C, respectively, 
and medians AF, BG, and CH intersecting at O, the center of gravity.  Let a=BF=CF, b=CG=AG, 
c=AH=BH, f=AF, g=BG, h=CH and ω=∠AFB. 
 
 Euler claims, without explicitly mentioning the Law of Cosines, that 
 

AB
2
= AF

2
+ BF

2
! 2AF " BF cos#  

and 
AC

2
= AF

2
+ CF

2
+ 2AF !CF cos" .  

Add these to get 
AB

2
+ AC

2
= 2AF

2
+ 2BF

2  
or 
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4cc + 4bb = 2ff + 2aa,  
or 

ff = 2cc + 2bb – aa,. 
Similarly, 
 

gg = 2aa + 2cc – bb and hh = 2aa + 2bb – cc. 
 
Thus the problem becomes to find three numbers, a, b, c, for which these three formulae produce 
squares.  
 
 We'll return to E451 and follow Euler on a short tangent. If we use the three fundamental 
equations, we find that 
 

 
2gg + 2hh ! ff = 9aa,

2hh + 2 ff ! gg = 9bb,

2 ff + 2gg ! hh = 9cc.

 

 
 In the fourth of these papers, E754, Euler describes these equations as "a pleasant property," but 
that this property "does not contribute in any manner to the solution of the problem."  But what is 
"pleasant" about these equations.  They are the same as his three fundamental equations, but with f, g 
and h substituted for a, b and c, and with 3a, 3b and 3c substituted for f, g and h.   
 
 This means that if a triangle with sides 2a, 2b and 2c has medians of length f, g and h, then a 
triangle with sides 2f, 2g and 2h has medians of length 3a, 3b and 3c.  If the measures in one triangle are 
all rational, then so are the measures in the other, and so we learn that solutions to this problem in 
rational trigonometry come in pairs.  
 
 But we still don't have any solutions.  All of Euler's solutions are rather long, so we will only 
summarize them 
 
 In his first solution, the one given in E451, Euler rewrites his first two fundamental equations as 
 

ff = b ! c( )
2

+ b ! c( )
2

! aa = b ! c( )
2

+ b + c + a( ) b + c ! a( )

gg = a ! c( )
2

+ a + c( )
2

! bb = a ! c( )
2

+ a + c + b( ) a + c ! b( ).
 

 
Being a genius at substitution, Euler introduces two new variables, p and q, that enable him to take 
square roots of these two equations and write them as 
 

f = b ! c + b + c + a( ) p

g = a ! c + a + c + b( )q.
 

 
After two pages of dense calculations, Euler finds a sixth degree polynomial that gives hh in terms of p 
and q.  Then he finds rational expressions for a, b and cˆin terms of p and q.  Hence, if p and q are 
rational, then so are a, b, c, f and g.  That leaves h.  So, all Euler has to do is find some rational values of 
p an q that make his sixth degree polynomial into a perfect square, and at the same time, don't make any 
of the denominators of his rational expressions equal to zero.  It is tedious, but he manages to find 
several solutions, among which are 
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1. a = 158 b = 127 c = 131 f = 204  g = 261 h = 255 

 
and its companion solution, reduced to lowest terms because f, g and h are all multiples of 3, 
 
 2. a = 68  b = 87  c = 85  f = 158  g = 127 h = 131. 
 
 Five years later, in 1778, Euler made his second attack on the problem, E713.  As we mentiond 
above, the Summary of this article mentions the "Amateurs of analysis," and he uses the law of cosines 
to justify his fundamental equations. 
 
 During those five years, Euler apparently realized that the "pleasant property" was not just an 
interesting property of triangles with rational medians, but is a general property of all triangles.  He calls 
it a "most distinguished property" and states it more geometrically than he did before, writing 
 

 AO
2
+ BO

2
+ CO

2
=
1

3
BC

2
+ AC

2
+ AB

2( ).  

 
 His other calculations are quite similar, but when it comes time to introduce the new variables p 
and q, he defines them as 
 

f = b + c +
p

q
b ! c + a( ).  

 
This, combined with the first fundamental equation, allows Euler to write a and f, and hence g and h, in 
terms of b, c, p and q.  Things get complicated, but after a while he introduces two more variables, r and 
s, to make c + b = pr and c – b = qs, and then two more, x and y such that p = x + y and q = x – y, then t 

and u so that 
a

q
= x + ty  and 

f

r
= x + uy , and finally M and N so that 2tx + tty = y + 2Mx  and 

2ux + uuy = y + 2Nx.   In this tower of substitutions, everything ends up depending on q and r, and Euler 
can find some triangles.  We've skipped five pages of details here.  The interested reader is encouraged 
to consult the original sources.  The mathematics there is considerably more difficult than the Latin. 
 
 In the end, Euler finds that for q = 1 and r = 2, as well as for q = 2, r = 3, he gets the same 
triangle we labeled 1 above, but for q = 2, r = 1, he finds 
 
 3. a = 404 b = 377 c = 619 f = 942  g = 975 h= 477. 
 
Then for q = 1 and r = 3, he gets 
 
 4. a = 3  b = 1  c = 2  f = 1  g = 5  h = 4. 
 
Though this is a solution to the Diophantine equations, the sides 3, 1 and 2 do not form a triangle. He 
gives several other solutions as well. 
 
 Hence, this solution lacks two of the properties we admire in the solution to the problem of 
Pythagorean triples.  Two different choices of the variables p and q can give the same solution, and 
some choices of p and q can give inadmissible solutions.  Euler doesn't seem to ask whether or not all 
rational triangles with rational medians are generated in this way. 
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 Euler's third solution to the problem of rational medinas, E732, followed just a year later, in 
1779.  For this paper, he called the midpoints of the sides X, Y, and Z instead of F, G and H, and the 
corresponding lengths of the medians are x, y and z instead of f, g and h.  Perhaps this is a symptom of 
Euler's blindness, as he had been almost entirely blind since unsuccessful cataract surgery in 1773, and 
he was unable to consult his earlier works on the subject to make his notation consistent.   
 
 Using his new notation, Euler transforms two of his three fundamental equations into different 
forms: 
 

I. xx ! yy = 3 bb ! aa( ),  
II, xx + yy = 4cc + aa + bb,  and 
III. zz = 2aa + 2bb ! cc.  

 
 These equations are enough different from the others that after Euler makes another sequence of 
miraculous substitutions, introducing f and g, p and q, m and n, t and u, and finally M, he gets everything 
in terms of f and g.  This takes him just three pages of calculations, and the solution is essentially the 
same as the one we translated above from E754.  A few highlights are 
 

m =
5gg ! ff

4gg
 and n =

5 ff ! gg

4 ff
, 

 
exactly as M and N will depend on r and q in E754.  Likewise, 
 

p = 4 m + n( )  and q = m ! n( )
2
! 4,  

 
almost like his variables x and y are defined in E754, but there he factors out their greatest common 
divisor. 
 
 Now, in terms of f, g, p and q, Euler tells us that the sides of the triangle are 2a, 2b and 2c, where 
a, b and c are given by 
 

a = f ! g( ) p + f + g( )q

b = f + g( ) p + f ! g( )q

c = 2g m ! n( ) 3m + n( ) ! 8g

= g m ! n( ) p + 2gq.

 

 
 He also gives equations for the lengths of the medians, x, y and z. 
 
 For his first example, he takes f = 2, g = 1 to get his first solution again, then f = 1, g = 2 to get 
the third one.  There are no new rational triangles in this paper.  Its main improvement over its 
predecessor, E713, seems to be that its calculations are a bit shorter, and its answer is more concise.   
 
 The last of the four papers is much like the third one. Euler wrote it three years later, in 1782, 
just a year before he died, and for some unknown reason he wrote it in French. The substitutions are 
slightly different and the resulting algorithm is a bit more streamlined.  Moreover, he takes less care to 
get integer results.  He is happy to get rational results, then multiply through by a common denominator 
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to make them integer.  He gets yet again his examples 1 and 2 above, but this time he gives some new 
examples, including 
 

5. a = 159 b = 325 c = 314 x =  309.5 y = 188.5 z = 202 
 
 From this series of papers, we see that even near the end of his life, Euler went back over his 
earlier results and tried to improve them.  His blindness did not impair his amazing powers of 
calculation or his ability to design ingenious substitutions.  Moreover, while his students mostly worked 
on applied problems, Euler seemed happy to work also on whimsical problems like this, just because 
they were fun. 
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