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 When an interesting illustration catches our eye, we sometimes stop to figure out what it is.  But 
when I first saw this illustration I was in a hurry.  I resolved to come back to it "later."  Now that later 
has finally arrived, I'm glad I remembered to go back. 
 
 The picture that caught my eye was the squarish-looking spiral below.  It was part of the 
Summarium of [E275], "Notes on a certain passage of Descartes for looking at the quadrature of the 
circle."  The Summarium is a summary of an article, usually written by the editor of the journal, that is 
printed at the beginning of the volume.  This time, the Summarium was four pages long, and the article 
itself was twelve. 
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 The Summarium gives us a bit of history that is not included in the article itself.  The Editor tells 
us that "the circumference of a circle is incommensurable with its diameter," or, as we would say it now, 
p is an irrational number.  He goes on to tell us that Archimedes approximated the ratio as 7 to 22 and 
Metius gave us 113 to 355. 
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 A bit later, and with only this discussion of Archimedes and Metius as motivation, the Editor 
asks us to let q be "the length of the quadrant of a circle whose radius is equal to 1," what we would 

denote 
π
4

. Then 

 q = sec
1
2

q ⋅ sec
1
4

q ⋅ sec
1
8

q ⋅ sec
1

16
q ⋅ sec

1
32

q ⋅ etc.  

 
A minute with Maple® confirms this, at least to ten decimal places, and the Editor leads us to believe 
that the illustration should help to convince us that it is true.  There is no mention of Descartes in the 
Summarium. 
 
 Euler begins the article itself describing a very different construction and with a different 
illustration.  He tells us that the method is due to Descartes and that it "indicates brilliantly the insightful 
character of its discoverer."1  As we go through Descartes' construction, it is helpful to note that 
Descartes describes a rectangle or a square by telling us two diagonally opposite corners of the shape.  
So, in the figure below, he calls the large square bf, and the rectangle next to it is cg. 
 

 
 
 Using the figure above, Descartes gives a procedure that begins with the length ab and the square 
on that length, bf.  Then he constructs a new length ax.  He claims (and Euler agrees) that the length ax 
forms the diameter of a circle that has the same circumference as the square bf.  Hence, if ab = 1, 

thenax =
4
π

, about 1.2732.  Here's how the construction works. 

 
 Take ao to be the ray containing the diagonal of square bf.  Beside this, construct rectangle cg so 
that its area is ¼ the area of square bf, and so that its (unnamed) corner lies on the ray ao.  
 
 Beside this, construct another rectangle dh, with its area ¼ the area of rectangle bf, and again 
with its corner on the ray ao. 
 

                                                                 
1 Here and elsewhere, when we quote from the text of E275, we usually follow the translation of Jordan Bell, available at 
EulerArchive.org and at the arXiv.  Thank you, Jordan, for your many fine translations of Euler's work. 
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 Continue constructing rectangles, each with ¼ the area of the previous one, and each with its 
corner on the ray.  It is easy to see that the sum of the bases of these rectangles,  
 

ab bc cd de+ + + +L  
 
converges to some length, call it ax, but it is not so easy to see how ax is related to ab, or how this has 
anything to do with the circumference of a circle.  Descartes, in the style of his times, doesn't tell us.  
Euler, though, sets out to prove it, and he shares the details of his proof with us. 
 
 But first, Euler proposes to solve the following: 
 

PROBLEM 
 
Given a circle around which a regular polygon is circumscribed, to find 
another circle, about which if a regular polygon with twice as many sides 
is circumscribed, the perimeter of the first polygon will be equal to the 
perimeter of the second one. 

 
 It is not yet clear what this has to do with Descartes' construction, or with the product of secants 
and the squarish spiral we saw in the Summarium, but those of us who remember how Archimedes 
approximated p as 22/7 will recognize how this problem is related to the value of p.  Euler uses the 
figure below to solve his problem. 
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 Here, MNE is an arc of the first circle.  That circle has center C and radius CE.  The segment PE 
is half of one side of the first polygon, circumscribed about MNE. 
 
 The new circle will be larger than the original one, so if we let CF be the radius of the new circle, 
we will have CE < CF.   
 
 Let FQ be a half-side of the new polygon.  Since the new polygon has the same circumference, 
but twice as many sides as the original, we have EP = 2 FQ.   Likewise, ∠ECP = 2 ∠FCQ. 
 
 Let O be the midpoint of PE.  Then QO || EF.  Also, let V be the point where the radius CQ 
intersects PE.  Note that V is between O and E, that is to say, EV < EO = ½ PE. 
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 Now Euler leads us through some triangle geometry.  Some steps are easy, but one involves 
knowing something that is largely forgotten today. 
 
 First, EV : CE = FQ : CF because ?CEV ˜ ?CFQ.  That was easy. 
 
 Second, EV : CE = EP : CE + CP.  This is not so easy.  Here's how I figured it out.  I compared 
?PCE with ?VCE.  Recall that ∠VCE = ½ ∠PCE.  I saw that the ratios CE : EV, CE : EP and CP : EP 
involved cotangents and cosecants of these angles, so I looked up the half-angle formula for cotangent 
and found it to be 

cot
θ
2

= cotθ + secθ.  

 
I think it was the first time in my life that I'd ever used the half angle formula for cotangents, but I thank 
my high school geometry teacher, Ken Solem, for teaching me that there is one, so I'd know to look it up 
when I needed it.  There may be a simpler way, but this was quick. 
 
 Third, by combining the first two steps, we get FQ : CF = EP : CE + CP. 
 
 
 Because FQ = ½ CF, this last proportion tells us that 
 

 ( )1
.

2
CF CE CP= +  

Subtracting CE from both sides gives 
 

 ( )1
'

2
EF CP CE= −  

Multiplying these last two together gives 
 

 
( )2 2

2

1
4
1

.
4

CF EF CP CE

EP

⋅ = −

=
 

 
The first equality is just algebra and the second line is an application of the Pythagorean theorem to the 
right triangle CEP. 
 
 This solves Euler's problem because the point F is now defined so that the rectangle with sides 
CF and EF has as its area one-fourth the area of the rectangle with sides EP and FQ. That, in turn, equals 
the area of the square with sides FQ. 
 
 This result is a little awkward to use, so Euler "cleans it up" with four corollaries: 
 

Corollary 1:  BecauseCF ⋅EF = FQ 2 , we have CF : FQ = FQ : EF . This means we have similar 
triangles CFQ ˜ FQE, so that ∠FCQ = ∠FQE. 
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Corollary 2: From Corollary 1, CE : EV = EO : EF, so that point F can be defined by drawing 
from the point O a straight line perpendicular to the line CV extended, and finding where that new line 
intersects the base line CE. 
 

Corollary 3: If the polygon circumscribing circle ENM has n sides, then∠ECP =
π
n

, 

and ∠FCQ =
π
2n

.  If we let the radius CE = r, then 

 

 EP = r tan
π
n

and FQ =
1
2

r tan
π
n

. 

 

Corollary 4: Because ∠FQE =
π
2n

,  

EF = FQ tan
π
2n

=
1
2

r tan
π
n

tan
π
2n

. 

 
If we let CF = s, then we have 

 FQ = s tan
π
2n

, 

and because  

 FQ =
1
2

r tan
π
n

,  

we have 

 s =
1
2

r tan
π
n

cot
π
2n

.  

 
Thus, we have a direct means of finding the length CF from the original length CE and the 

number of sides n. 
 
 Now Euler is ready to prove that Descartes' construction does what is claimed.  This requires a 
new figure: 
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 Here, we let CE be the radius of a circle inscribed in a square, CF that of an octagon, CG of a 
hexadecagon, CH, etc., and let EP, FQ, GR, HS be the corresponding half-sides.  As we saw before,  
 

 FQ =
1
2

EP, GR =
1
2

FQ =
1
4

EP, HS =
1
2

GR =
1
4

FQ =
1
8

EP, etc.  

 
From the preceding problem,  

 CF ⋅ EF =
1
4

EP2 = FQ 2 . 

Similarly, 

 
CG ⋅ FG =

1
4

FQ2 =
1
4

CF ⋅ EF = GR2 ,

CH ⋅GH =
1
4

GR2 =
1
4

CG ⋅ FG = HS2 , etc.
 

 
With the points F, G, H, etc. determined in this way, we get Descartes' construction.  Moreover, the 
points E, F, G, H, etc. "ultimately approach" the point x, the radius Cx will be the radius of the circle the 
circumference of which is approached by the corresponding polygons. 
 
 Thus, the construction of Descartes is proved.  The construction leads to a means of 
approximating p that Euler describes in another corollary: 
 

Corollary 1: If we take CE = a, CF = b, CG = c, CH = d, etc., we have EP = a, and we get the 
recursive sequence 
 

 b b − a( )=
1
4

aa, c c − b( )=
1
4

b b − a( ), d d − c( )=
1
4

c c − b( ), etc. 

 
From this, quadratic formula gives us 
 

 b =
a + 2aa

2
, c =

b + 2bb − ab
2

, d =
c + 2cc − bc

2
, etc. 

 
and these quantities, taken to infinity, give the radius of the circle with perimeter equal to 8a. 
 
 Indeed, if we take a = 1, then the first several values of this sequence are 

 
a  = 1.00000 
b = 1.20711 
c = 1.25683 
d = 1.26915 
e = 1.27222 
f = 1.27298 
g = 1.27318 

 
and these seem to be converging towards the required value of 4/p ˜ 1.27323954.  Indeed, they agree to 
these eight decimal places on the 14th step (taking a = 1 as step 1). 
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 Let us pause to take stock of what has happened so far in this article.  Its title promised that we 
would learn about a method of Descartes for approximating p.  We have done that.  However, the 
Summarium, as well as the title I chose for the column, advertised an infinite product of secants.  We 
haven't seen such an infinite product, nor have we seen anything of that spiral illustration that caught my 
eye in the first place. It's time to see what we can do about that.  Euler begins a new problem. 
 

PROBLEM 
 
Taking ϕ  to be any arc of a circle of radius 1, to find the sum of the 
infinite series 

tanϕ +
1
2

tan
1
2

ϕ +
1
4

tan
1
4

ϕ +
1
8

tan
1
8

ϕ +
1

16
tan

1
16

ϕ + etc.  

 
 To solve this problem, Euler brings back the figure from his first problem.  This time he lets 
∠ECP = ϕ  be any angle, and ∠FCQ = 1

2 ϕ.   He scales his drawing so that FQ = 1, which makes EP = 2.  
Then CE = 2cotϕ,  CF = cot 1

2 ϕ  and EF = tan 1
2 ϕ. This last formula requires that we recall from 

Corollary 1 of the first problem that ? FQE ˜ ? FCQ.  Now CE = CF – EF, so 
 

2cotϕ = cot 1
2 ϕ − tan 1

2 ϕ and tan 1
2 ϕ = cot 1

2 ϕ − 2cotϕ . 
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In the same way, tanϕ = cotϕ − 2cot 2ϕ.We can apply these identities to get every term of the series in 
the problem, and we find that 
 

tanϕ = cotϕ − 2cot 2ϕ ,
1
2 tan 1

2 ϕ = 1
2 cot 1

2 ϕ − cotϕ,
1
4 tan 1

4 ϕ = 1
4 cot 1

4 ϕ − 1
2 cot 1

2 ϕ ,
1
8 tan 1

8 ϕ = 1
8 cot 1

8 ϕ − 1
4 cot 1

4 ϕ ,

etc.

 

 
Bravely adding both sides of these together, and in characteristic Eulerian form, taking n to be an 
infinite number, we see that on the left we get exactly the series we are trying to sum, and on the right a 
riot of cancellation from which the only terms that survive are  



  8 

 

−2 cot 2ϕ +
1
n

cot
1
n

ϕ.  

 

The second term is subject to l'Hôpital's rule, and becomes just 
1
ϕ

,  so the sum of Euler's series and the 

solution to the latest problem is  
 

1
ϕ

− 2cot 2ϕ . 

 
 From here, Euler gives a few different paths to his product of secants.  We'll describe my 
favorite.  Start with 
 

 
tanϕ +

1
2

tan
1
2

ϕ +
1
4

tan
1
4

ϕ +
1
8

tan
1
8

ϕ + +
1
16

tan
1

16
ϕ +L =

1
ϕ

− 2cot 2ϕ . 

 
Integrate both sides to get 
 

 
− ln cosϕ − ln cos

1
2

ϕ − ln cos
1
4

ϕ − ln cos
1
8

ϕ − ln cos
1

16
ϕ −L = lnϕ − ln sin 2ϕ + Const. 

 
Taking ϕ = 0  leads to finding that the constant is ln 2 .  Also, − lncosθ = lnsecθ , so, by the laws of 
logarithms we get 

1 2
,

1 1 1 1 sin2cos cos cos cos cos
2 4 8 16

ϕ
ϕϕ ϕ ϕ ϕ ϕ

=
⋅ ⋅ ⋅ ⋅ ⋅L

 

 
or, what amounts to the same thing,  
 

1 1 1 1 2
sec sec sec sec sec .

2 4 8 16 sin2
ϕ

ϕ ϕ ϕ ϕ ϕ
ϕ

⋅ ⋅ ⋅ ⋅ ⋅ =L  

 

The product given in the Summarium is the special case of this formula whereϕ =
π
4

. 

 
 And what does Euler say of the pretty spiral that started it all?  Nothing.  He leaves that to us.  

Take AB = OB = 1. Then we might begin by noting that ?OBC is a right triangle and ∠BOC =
π
4

.  So, 

OC
OB

= sec
π
4

.Since OB = 1, this makes OC = sec
π
4

.  

 

 Then ?OCD is a right triangle and ∠COD =
π
8

.  So 
OD
OC

= sec
π
8

.   We know OC from the 

previous step.  The result follows by repeating this process infinitely many times. 
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 So, a pretty picture leads to a pleasing result. 
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