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 The story of Euler and complex numbers is a complicated one.  Earlier in his career, Euler was a 
champion of equal rights for complex numbers, treating them just like real numbers whenever he could.  

For example, he showed how to integrate 
1

x2 + 1
dx∫  without using inverse trigonometric functions. He 

factored x2 + 1= x + −1( ) x − 1( ), then used partial fractions to rewrite 
 

 
1

x2 + 1
=

1
2 −1

x + −1
−

1
2 −1

x − −1
, 

 
then integrated this difference to get 

 
1

x2 + 1
dx∫ = 1

2 −1ln
x + −1
x − −1

. 

 
Euler typically omitted constants of integration until he needed them, and also seldom used i in place of 

−1 .  His role in that particular notational innovation is exaggerated. 
 
 Euler struck a second, and better-known blow for justice for complex numbers when he took the 

variable in the exponential function ex
 to be an imaginary number, say x = θ −1 , and showed that 

 

 eθ −1 = cosθ + −1sinθ. 
 
 Euler continued to use complex numbers late in his life, but his applications seem to me to be 
less sweeping and more technical, showing how they solved a variety of specific problems.  This month 
we look at one such problem from 1773. 
 
 The title of E447 is "Summatio progressionum  sinϕ λ + sin2ϕλ + sin3ϕλ + K + sinnϕλ ,  

 cosϕ λ + cos2ϕλ + cos3ϕλ + K + cosnϕλ ."  Right off, this is confusing to the modern reader, because 
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Euler writes sinϕ λ  where we would write sinλ ϕ  and mean sinϕ( )λ .  For this, we will use the modern 
notation. 
 
 Euler begins by asking us to let 

cosϕ + −1 sinϕ = p and

cosϕ − −1 sinϕ = q.  
 
Then, from de Moivre's formula, we have 

cosnϕ =
pn + qn

2
and

sinnϕ =
pn − qn

2 −1
,

 

 
and because sin2 ϕ + cos2 ϕ = 1, we have 

pq = 1.  
 
Properties of geometric series tell us 

 
pα + p2α + p3α + L + pnα =

pα 1− pnα( )
1− pα  

and 

 
qα + q2α + q3α + L qnα =

qα 1− qnα( )
1− qα .  

 
If we add these together and repeatedly apply the identities pq = 1  and pkα + qkα = 2coskαϕ  (a 
consequence of de Moivre's formula), we get 
 

−1 +
cosnαϕ − cos n + 1( )αϕ

1 − cosαϕ
.  

 
Likewise, if we subtract the q-series from the p-series we get  
 

sinαϕ − sin n + 1( )αϕ + sin nαϕ
1 − cosαϕ

−1. 

 
Euler uses an integral sign, ?, where we would use a summation sign, ?, so he writes these results as  
 

(1)   
pnα + qnα( )= −1 +

cosnαϕ − cos n + 1( )αϕ
1 − cosαϕ∫ and

pnα − qnα( )=
sinαϕ + sin nαϕ − sin n + 1( )αϕ

1 − cosαϕ
−1.∫

 

 
 Now Euler is ready to work on the sums in the title of the article.  He takes λ = 1 , and his two 
series become  
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s = sinϕ + sin2ϕ + sin 3ϕ + L + sinnϕ

= sinnϕ∫ and

t = cosϕ + cos2ϕ + cos 3ϕ + L + cosnϕ

= cosnϕ.∫

 

 
Because of de Moivre's identities,  

sinnϕ =
pn − qn

2 −1
and

cosnϕ =
pn + qn

2
,

 

these two series can be rewritten as 
 

2s −1 = pn − qn( )∫ and

2t = pn + qn( )∫ .
 

 
But from formula (1) above, and taking α = 1, this gives 
 

s =
sinϕ + sinnϕ − sin n + 1( )ϕ

2 1− cosϕ( )
and

t = −
1
2

+
cosnϕ − cos n + 1( )ϕ

2 1− cosϕ( )
.

 

 
 Note how unexpectedly simple these formulas are.  They each the sum of n terms using only the 
terms at the beginning and the terms at the end, without using any of the terms in between. 
 
 Now take λ = 2  so that 

 

s = sin2 ϕ + sin2 2ϕ +L + sin2 nϕ

= sin2 nϕ∫ and

t = cos2 ϕ + cos2 2ϕ +L + cos2 nϕ

= cos2 nϕ∫ .

 

 
Recalling that pq = 1 we get 
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sin2 nϕ = sinnϕ( )2

=
pn − qn

2 −1






2

=
p2n − 2pnqn + q2n

−4

=
1
2

−
p2n + qn

4
.

 

Similarly, 

cos2 nϕ =
1
2

+
p2n + q2n

4
. 

 
Summing these, we get 

4s = 2 1∫ − p2 n + q2 n( )∫ and

4t = 2 1∫ + p2n + q2n( )∫ .
 

 

Obviously, 1∫ = n , so, using formula (1) we get 

 

s =
n
2

+
1
4

−
cosnϕ − cos2 n + 1( )ϕ

4 1− cos2ϕ( )
and

t =
n
2

−
1
4

+
cosnϕ − cos2 n + 1( )ϕ

4 1− cos2ϕ( )
.

 

 
 It is reassuring to note that s + t = n, as it should be, because s is a sum of n squared sines and t is 
a sum of the corresponding squared cosines. 
 
 Euler does λ = 3  and λ = 4 , and his expressions for s and t grow first to three, then to four 
terms, though the terms grow no more complicated, except for involving higher powers of 2.  Moreover, 
his expressions have the same general form. 
 
 Let's look a bit more closely at this expression for s in the case λ = 2,  the sum of the squares of a 
sequence of sines.  Note how the last term does not increase as the number n increases.  Also, if cos 2ϕ  
is not very close to 1, then the denominator in the last term is not very small.  Moreover, the two cosines 
in the numerator are always between -1 and 1, so their difference is between -2 and 2.  Consequently, the 
last term is bounded between two values, + M  and − M , that do not depend on n.  Hence, s is always 

between 
n
2

+
1
4

+ M  and 
n
2

+
1
4

− M .   Thus, as n goes to infinity, so also does s.  The same reasoning 

applies to t. 
 
 Note that this was not the case for the series corresponding to λ = 1 .  The last terms in the 
expressions for s and t are both bounded, by the same argument we gave above, but neither expression 
contains a term that goes to infinity as n increases. 
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 Indeed, these remarks about λ = 1  are true for all odd exponents.  That is to say, if λ  is odd, 
then neither s nor t increase without bound as n increases, but for λ  even, the series behaves like λ = 2,  
and both s and t grow without bounds. 
 
 Euler notices this, too, and wants to examine it a bit. In Euler's time, there were several notions 
of the value of a series.  One of them, proposed by Jakob Bernoulli, was that the value was the limit of 
the average value of the partial sums.  Using this notion, the series 
 

1− 1+ 1− 1+ 1− 1+ 1− etc.  
 
would have value equal to ½, because half the time the partial sums are 1 and half the time they are zero.  
Hence, the weighted average value of the partial sums is ½. 
 

This is apparently the notion that justifies Euler's next steps. Taking λ = 1 , he has shown that 
 

 

s = sinϕ + sin2ϕ + sin 3ϕ + L + sinnϕ

=
sinϕ + sinnϕ − sin n + 1( )ϕ

2 1− cosϕ( )
.

 

 
Euler argues that the average value of sinnϕ − sin n + 1( )ϕ  is zero, so, if we let n go to infinity the value 
of the now-infinite series s can be considered to be 
 

s =
sinϕ

2 1 − cosϕ( )
.  

 
The same analysis makes the infinite series 

t = −
1
2

.  

 
 Modern analysts throughout the world cringe at this, because Euler has given an exact, finite sum 
to two series for which the terms do not converge to zero.  The analysts don't let us do that anymore. 
 
 Perhaps Euler realizes we may have doubts about this particular result, for he reassures us that it 
is easy to show that this makes sense.  He rewrites t as  
 

t =
cosϕ − 1

2 1 − cosϕ( )
. 

 
Multiplying both sides by 2 − 2cosϕ  and writing t as the series it represents, Euler gets 
 

   

 

cosϕ − 1 = 2 − 2cosϕ( )t
= 2 − 2cosϕ( ) cosϕ + cos2ϕ + cos 3ϕ + L( )
= 2cosϕ + 2cos2ϕ + 2cos 3ϕ + 2cos4ϕ + etc.

− 2cos2 ϕ − 2cosϕ cos2ϕ − 2cosϕ cos3ϕ − etc.

 

 
Now, from the angle addition formula for cosines we know that in teneral 
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2 cosacosb = cos a − b( )cos a + b( ).  

 
Applied to the negative terms of the preceding series, this makes 
 

2cos2 ϕ = 1+ cos2ϕ,
2 cosϕ cos2ϕ = cosϕ + cos3ϕ ,
2 cosϕ cos 3ϕ = cos2ϕ + cos4ϕ ,
2 cosϕ cos4ϕ = cos3ϕ + cos5ϕ ,
2 cosϕ cos5ϕ = cos4ϕ + cos6ϕ ,
2 cosϕ cos6ϕ = cos5ϕ cos 7ϕ ,

etc.

 

 
 
Now, substituting these for those negative terms, and, at the same time rearranging the terms a bit, we 
get 
 

cosϕ − 1 = 2cosϕ + 2cos2ϕ + 2cos3ϕ + 2cos 4ϕ + etc.
− 1 − cosϕ − cos2ϕ − cos 3ϕ − cos4ϕ − etc.
− cos2ϕ − cos 3ϕ − cos4ϕ − etc.

 

 
 Note how, when we substituted 1+ cos2ϕ  for 2cos2 ϕ , we put the 1 in the second row of the 
new expression, and the cos 2ϕ  in the third row.  Likewise for all the other substitutions.  As modern 
mathematicians, we benefit from the work of Cauchy and we know that such rearrangements of terms 
may not be valid unless the series involved are absolutely convergent, and that the series in question 
here are not absolutely convergent.  Today, Euler would have to find another way to do this. 
 
 Getting back to our formulas, let's rewrite the preceding formula, aligned a bit differently, so that 
things that cancel can be seen more clearly.  We get 
 

cosϕ − 1 = 2cosϕ + 2cos2ϕ + 2cos 3ϕ + 2cos 4ϕ + etc.
− 1 − cosϕ − cos2ϕ − cos 3ϕ − cos 4ϕ − etc.

− cos2ϕ − cos 3ϕ − cos 4ϕ − etc.
 

 
which is clearly true.   
 
 This justifies Euler's claim that, for infinite values of n,  
 

t = −
1
2

.  

 
 
 Euler thought he was finished, but the Editor's summary at the beginning of the volume of the 
Novi commentarii mentions that he later added an appendix "Summatio generalis infinitarum aliarum 
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progressionum ad hoc genus referendarum" (Summation of infinitely many general progressions related 
to this kind).  It contains a theorem and two examples. 
 

Theorem:  If we know the sum of a progression  
 

  Az + Bz2 + Cz3 + Dz 4 +L + Nzn ,  
 
then it always permits us to sum the two progressions  
 
  S = Ax sinϕ + Bx2 sin2ϕ + Cx 3 sin3ϕ + L + Nxn sinnϕ  
 
and 
 
  T = Axcosϕ + Bx2 cos2ϕ + Cx 3 cos3ϕ + L + Nxn cosnϕ . 
 

The proof is straightforward, but in the course of the proof, Euler introduces the function 
notation as he generally uses it in the 1760s.  When he writes  

 
 ∆ : z,  
 
he means us to substitute the function defined by the progression  
 

 Az + Bz2 + Cz3 + Dz4 + L + Nzn . 
 
Though he had used the modern f x( ) function notation briefly in the 1730s, Euler did not stick with 
that notation, and from the 1760s until his death in 1783, he and his assistants used this notation with a 
symbol, usually an upper-case Greek letter, followed by a colon, and then the variable. 
 
Then he notes that, with p and q as before, that is,  
 

 
p = cosϕ + −1sinϕ and

q = cosϕ − −1 sinϕ,
 

 
his function notation gives  

 
2S −1 = ∆ : px − ∆qx and

2T = ∆ : px + ∆ : qx.
 

 
Then he gives examples. 
 

Example 1:  If all the coefficients in ? :z are equal to 1 and if the series is taken to be an infinite 
series, then  

 ∆ : z =
z

1 − z
.  

Then, from the equations in the proof of his theorem as well as the identities p − q = 2 −1 sinϕ ,  
p + q = 2cosϕ  and pq = 1,  Euler gets that  
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S =

x sinϕ
1 − 2x cosϕ + x2 and

T =
x cosϕ − x2

1 − 2x cosϕ + x2 .
 

 
Typically, Euler checks that his result agrees with what he already knows.  In a corollary, he finds that 
for the special case x = 1, this gives back the formulas from earlier in the paper, that  
 

 
S =

sinϕ
2 1 − cosϕ( )

and

T = −
1
2

.

 

 
As a second example, Euler takes  

 

∆ : z = ln
1

1 − z

= z +
1
2

z2 +
1
3

z3 +
1
4

z 4 + L ,
 

and he finds that  

 
S = arctan

x sinϕ
1− xcosϕ

and

T = −
1
2

ln 1− 2x cosϕ + x2( ).
 

 We leave the details to the reader. 
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