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 For his whole life Euler was interested in fluids and fluid mechanics, especially their applications 
to shipbuilding and navigation.  He first wrote on fluid mechanics in his Paris Prize essay of 1727, [E4], 
Meditationes super problemate nautico, de implantatione malorum …, (Thoughts about a navigational 
problem on the placement of masts), an essay that earned the young Euler an acessit, roughly an 
honorable mention, from the Paris Academy.  Euler's last book, Théorie complete de la construction et 
de la manoeuvre des vaisseaux, (Complete theory of the construction and maneuvering of ships) [E426], 
published in 1773, also dealt with practical applications of fluid mechanics.  We could summarize 
Euler's contribution to the subject by saying that he extended the principles described by Archimedes in 
On floating bodies from statics to dynamics, using calculus and partial differential equations.  Indeed, he 
made some of the first practical applications of partial differential equations. 
 
 Euler's work is very well known among people who study fluid mechanics.  Several of the 
fundamental equations that describe non-turbulent fluid flow are known simply as "the Euler equations," 
and the problem of extending those equations to turbulent flow, the Navier-Stokes equations, is one of 
the great unsolved problems of our age. 
 
 This month, we are going to look at [E258], Principia motus fluidorum, (Principles of the motion 
of fluids), in which Euler derives the partial differential equations that describe two of the basic 
properties of fluids: 
 

1. the differential equations for the continuity of incompressible fluids, and 
2. the dynamical equations for ideal incompressible fluids. 

 
 We will examine the first of these derivations in detail. 
 
 Euler begins by warning us how much more complicated fluids are than solids.  If we know the 
motions of just three points of a rigid solid, then we can determine the motion of the entire body.  For 
fluids, though, different parts of the fluid can have very different motions.  Even knowing the flows of 
many points still leaves infinitely many possible flows.   
 
 This is not to say that there are no laws regarding fluid flow, and one of Euler's favorite is the 
Law of Impenetrability, that two objects cannot occupy the same space at the same time.  This will be 
Euler's main tool in his analysis.  He will describe what we would call "volume elements" and regard 
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them as individual objects, which therefore must obey the Law of Impenetrability.  Moreover, Euler will 
assume that the fluid flow is continuous and incompressible.  Euler's notion of continuity was a bit 
different than ours is today, and his notion implied that the flow also be differentiable.  This kind of flow 
is now called incompressible laminar flow.  This rules out phenomena like breaking into droplets, 
forming cavities and flowing around obstacles.  Thus Euler seeks to describe what he calls possible 
motions, those that are both incompressible and continuous. 
 
 For the first part of his paper, the part in which he derives the PDEs of incompressible fluids, he 
additionally assumes that the fluid body is subject to no forces or pressures.  In the end, this last 
assumption does not change Euler's conclusions. 
 
 Euler begins with the two-
dimensional case and asks us to 
consider an arbitrary point l in the fluid 
body.  (See Fig. 1.)  He takes his axes 
to be the lines AQ and AB, so the 
coordinates of the point l are AL = x 
and Ll = y.   
 
 With respect to these axes, we 
resolve the motion of the point l into its 
two components, u = lm  parallel to the 
x-axis and v = ln  parallel to the y-axis.  
He notes that the speed of flow at point 
l is thus uu + vv  and its direction, 
given as an angle relative to the x-axis 
is arctan u

v
.  

 
 Now, these velocity components u and v are not constant, but they vary with x and y.  Euler 
introduces functions L, l, M and m so that he can describe these variations as differentials, writing 
 

du = ldx + Ldy and

dv = mdx + Mdy.
 

 

We would write L =
!u

!x
, l =

!u

!y
, M =

!v

!x
and m =

!v

!y
.  Both pairs, L and l, M and m, are 

themselves partial derivatives, so 
!L

!y
=
!l

!x
and

!M

!y
=
!m

!x
.    When Euler wrote this paper in 1752, 

this fact that "mixed partial derivatives are equal" was still a fairly recent result. [E44, Sandifer 2004] 
 
 If a new point P (again, see Fig. 1) is located at distances dx and dy relative to the point l, then 
the velocity components at the point P will be 
 

u + Ldx + ldy and

v + Mdx + mdy.
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 Euler cleverly reuses his points m and n by letting lmn be a triangular element of water, and takes 
lm = dx and ln = dy.  He reassures us that,1 "The whole mass of the fluid can be mentally divided up into 
elements like this, so that what we prescribe for one element will apply equally well to all."  Euler seeks 
to describe the points p, q and r to which the points l, m and n respectively are moved by the flow during 
the time interval dt.  He calls this time interval a tempusculo, or "tiny time interval."  I don't recall seeing 
this word before, and I wonder if it is simply uncommon, if it was a bit of "math slang" popular in the 
1750s, or if Euler constructed it just for the occasion. 
 
 To locate the points p, q and r, Euler begins by giving us table of the velocities in the x and y 
directions (i.e. parallel to AL and AB, respectively) at the points l, m and n: 

 
point: l m n 
speed in the x direction u u +Ldx u +ldy 
speed in the y direction v v +Mdx v +mdy 

 
This lets him write the coordinates of each of the points p, q and r.  First, 
 

AP ! AL = udt and

Pp ! Ll = vdt.
 

 
This gives the coordinates of p as A = AL + udt  and Pp = Ll + vdt.  Similarly, the coordinates of q 
are AQ = AM + u + ldx( )dt  and Qq = Mm + v + Mdx( )dt,  and those of r are AR = AL + u + ldy( )dt  and 
Rr = Ln + v + mdy( )dt . 
 
 Euler gives a brief argument that pqr is still triangle because triangle lmn and the time interval dt 
are infinitely small. Then, "[s]ince the element lmn ought not be extended into a greater area, nor to be 
compressed into a smaller one, its motion must be so composed that the area of triangle pqr equals the 
area of triangle lmn."  This is a key observation, for it allows Euler to describe his notion of 
incompressibility by giving conditions that preserve the area of the element lmn.  Euler does not yet 
have access to the Divergence theorem that many of us learn in our third semester calculus course, 
because vector fields and their accompanying notions of gradient, divergence and curl, did not arise until 
the 19th century.  Hence Euler has to do all the work directly, "from scratch." 
 
 Triangle lmn is a right triangle, so it is easy to find its area, 1

2
dydx.  

 
 To find the area of triangle pqr, we refer again to Fig. 1, and see that the area is the sum of the 
areas of trapezoids PprR and RrqQ, less the area of trapezoid PpqQ.   In formulas,  
 

PprR =
1

2
PR Pp + Rr( ),

RrqQ =
1

2
RQ Rr +Qq( ) and

PpqQ =
1

2
PQ Pp +Qq( ).

 

 

                                                             
1 Here and elsewhere in this column, when I quote Euler's words, I use the translation graciously provided by Enlin Pan. 
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Substituting and collecting terms gives 
 

pqr = 1

2
PQ ! Rr " 1

2
RQ !Pp " 1

2
PR !Qq.  

 
Now, let PQ=Q, PR=R so that RQ=Q – R. Also let Qq=Pp+q and Rr=Pp+r, and the area formula 
simplifies to 
 

pqr = 1

2
Q ! r " 1

2
R !q.  

 
 From what came earlier, we can rewrite the elements of the right hand side using differentials to 
get 
 

Q = dx + Ldxdt,

R = ldydt and
 

q = mdxdt,

r = dy + mdydt.
 

 
Now, the details are interesting, so we'll include them. 
 
Substitution, then factoring gives 
 

pqr = 1

2
dxdy 1+ Ldt( ) 1+ Mdt( ) ! 1

2
Mldxdydt

2
,  

 
which combines to give 
 

pqr = 1

2
dxdy 1+ Ldt + mdt + Lmdt

2
! Mldt

2( ). 
 
Because we know that !pqr = 1

2
dxdy  and that dxdy ! 0 , we substitute, then subtract and cancel to get 

 
Ldt + mdt + Lmdt

2
! Mldt

2
= 0  

or 
  L + m + Lmdt ! Mldt = 0. 
 
As dt vanishes, this gives 
 
  L + m = 0 . 
 
In terms of partial derivatives, Euler writes 
 

  
du

dx
+
dv

dy
= 0,  

 
but we would write 
 

  
!u

!x
+
!v

!y
= 0 ,  

 
or even 
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! "u = 0.  
 

This last notation was at least 100 years in Euler's future. 
 
 An analogous argument, based on Fig. 2, seven pages long instead of four, leads to the analogous 
conclusion for three dimensions, which Euler writes 
 

du

dx
+
dv

dy
+
dw

dz
= 0. 

 
It is interesting to note that, except for the relative positions of points p, q and r, Fig. 1 is a proper subset 
of Fig. 2.  Likewise, the argument leading to Euler's two dimensional formula is a proper subset of the 
analogous three dimensional argument as well. 
 

 
 
 At this point, we've described only the first part of Euler's paper.  In the first part, Euler had not 
concerned himself with how the flow might change over time.  The key new idea in the second part is 
that forces, internal and external, might cause the flow itself to change with time.  Thus, his equations of 
motion in two dimensions have an extra term to describe how the flow changes with time.  In particular, 
and in modern terms, he begins with  
 

du =
!u

!x
dx +

!u

!y
dy +

!u

!t
dt and

dv =
!v

!x
dx +

!v

!y
dy +

!v

!t
dt.

 

 
This is clearly analogous to his starting point in the first section, where his first equations were 
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du = ldx + Ldy and

dv = mdx + Mdy.
 

 
In fluids, change in velocity is related to pressure, denoted by p.  As in the first part of the paper, Euler 
uses his initial equations to derive the differential equations, first in two dimensions, then in three, that 
describe the pressures in fluid flow.  For three dimensions, and in modern terms, they are 
 

!p
!x

= " 2
!u
!x
u +

!u
!y
v +

!u
!z
w +

!u
!t

#
$%

&
'(
,

!p
!y

= " 2
!v
!x
u +

!v
!y
v +

!v
!z
w +

!v
!t

#
$%

&
'(
and

!p
!z

= "1" 2
!w
!x

u +
!w
!y

v +
!w
!z
w +

!w
!t

#
$%

&
'(
.

 

 
 In the interests of brevity, we will not give more details of these derivations.  The interested 
reader is encouraged to consult [Truesdell 1954] and Enlin Pan, in his English translation of [E258]. 
 
 Finally, sharp-eyed readers who read the references first may note three other articles that Euler 
wrote about fluids, [E225], [E226] and [E227].  From their titles "General principles on the state of fluid 
equilibrium", "General principles on the movement of fluids" and "Continuation of the researches on the 
theory of the movement of fluids", they seem to cover much of the same material as [E258].  From their 
length, a total of 131 pages, compared to 36 pages for E258, they seem to cover the material in more 
depth, and from their Eneström numbers, all less than 258, it is evident that they were all published 
before E258.  Why, then, did we describe E258 instead of E225, E226 and E227? 
 
 E258 was actually written first, in 1752, but did not appear in the journals of the St. Petersburg 
Academy until its volume for papers presented in the years 1756 and 1757.  Typical publication delays 
delayed the actual printing of that volume until 1761.  The other three were written in 1753, 1755 and 
1755 respectively in French for the journal of the Berlin Academy and published in that academy's 
volume for the year 1755, printed in 1757.  Euler's colleagues in Berlin would have learned of the results 
in 1753 and 1755, and scientists elsewhere would have learned them in 1757.  Hence, if we are studying 
the influence of Euler's ideas, then we should have looked at the three papers in French.  Moreover, they 
represent a more refined and complete treatise on the subject. 
 
 However, if we wish to see the growth of Euler's ideas, to see "how Euler did it," then we should 
look at his earlier work on the subject, and that is E258.  Readers interested in the differences between 
E258 and the three treatises in French should consult [Truesdell 1954].  Truesdell's "Introduction" itself 
is an outstanding essay, and it's in English! 
 
Special thanks to Enlin Pan for allowing me to use his English translation of E258.  It was most helpful. 
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