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 In the two centuries between Descartes (1596-1650) and Dirichlet (1805-1859), the mathematics 
of curves gradually shifted from the study of the means by which the curves were constructed to a study 
of the functions that define those curves.  Indeed, Descartes' great insight, achieved around 1637, was 
that curves, at least the curves he knew about, had associated equations, and some properties of the 
curves could be revealed by studying those equations.  Almost exactly 200 years later, in 1837, Dirichlet 
gave his famous example of a function defined on the closed interval [0, 1] that is discontinuous at every 
point, namely  
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The roles of the two objects had been reversed and Mathematics had become far more interested in the 
study of functions than in the study of curves. 
 
 Euler came roughly half way between Descartes, both in years and in the evolution of 
mathematical ideas.  He was instrumental in the early development of the modern idea of a function used 
the concept to lead mathematics away from its geometric foundations and replace them with analytic, 
i.e. symbolic manipulations, but he could not foresee how general and abstract the idea of a function 
could eventually become. 
 
 In 1756, Euler was devoting much of his intellectual powers to using differential equations to 
study the world.  As we saw last month, he used them to model fluid flow.  A future column will be 
devoted to how he used differential equations to design more efficient saws.  It should be no surprise 
that he also used differential equations get new results about curves.  
 
 When Euler wrote Exposition de quelques paradoxes dans le calcul integral, (Explanation of 
certain paradoxes of integral calculus), [E236], he posed four problems with a distinctly 17th century 
flavor, as we shall see.  Then he used his new tools of differential equations to solve the problems.  He 
dwelt as much on his clever technique for solving the problems as he did on the geometry itself.  Indeed, 
he was so intrigued by his technique that he dubbed it a "paradox" and used that word in the title of his 
article.  In this column, we will look at the first of his four problems, see why I've described it as having 
a 17th century flavor, and then look at Euler's clever solution. 
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  Euler describes the problem as follows:1 
 
Problem 1:  Given point A, find the curve EM such that the perpendicular AV, derived from point A onto 
some tangent of the curve MV, is the same size everywhere. (Fig. 1) 
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 This is a little confusing, and the problem is neither the clarity of Euler's French nor the quality 
of Andrew Fabian's translation. Both are excellent. Rather, it is that some of the vocabulary of geometry 
has changed in the last 250 years.  Let us untangle it as we go along. 
 
 First, let A be the given point, and take the line AP to be an axis.  The curve we want to find is 
EM, and a little later on, Euler will assume that m is another point on the same curve infinitely close to 
M.  The special property that Euler wants his curve to have involves the line MV, which is tangent to the 
curve EM at the point M.  He wants the distance between this line MV and the given point A to be the 
same, for every line tangent to the curve EM.   
 
 Before proceeding to Euler's answer to his own question, let's see why we described this problem 
as having the flavor of the century before Euler. 
 
 In ancient times, Euclid studied some of the properties of the lines tangent to a circle.  His main 
result was that the tangent lines are perpendicular to their corresponding radii.  The next century, 
Apollonius determined the lines tangent to a parabola by determining the point at which the tangent to a 
particular point intersects the axis of the parabola.   
 
 There was little new in the world of tangents until the early 1600s, when Descartes and Fermat 
(1601-1665) each found algebraic ways to find things we now recognize as being equivalent to tangents.  
In each case, the object they used was either a line segment or the length of a line segment.  In Fig. 2, let 
TN be an axis and let EMm be a curve.  If the line TM is tangent to the curve EMm at the point M and if 
T is the point where that tangent intersects the axis, then the segment MT, or its length, is what Descartes 

                                                                 
1 Here and elsewhere, when we quote Euler's article, we use the fine translation by Andrew Fabian. 



  3 

or Fermat would have called the tangent.  The projection of the tangent onto the axis, that is the segment 
PT, was called the subtangent.  The other two objects involved the line perpendicular to the curve EMm 
at the point M.   Taking N to be the point where that perpendicular intersects the axis, the segment MN 
was the normal and its projection onto the axis, that is the segment PN, was the subnormal.   
 
 

 
 
 Note that as modern readers, we easily recognize these line segments that are closely related to 
the derivative of a function at a point, but in the 1600s, hardly anyone had taken even Calculus I, so 
recognizing this relationship would have been much more difficult for them. 
 
 One of the founders of the Paris Academy, Claude Perrault, (1613-1688) recognized a physical 
problem related to the length of the tangent segment.  Let us imagine a boy walking along the axis AP 
and pulling a wagon, assumed to be not on the axis, with a rope of fixed length a.  People knew enough 
about resolution of forces to know that the direction the wagon moved would always be the same as the 
direction of the rope, and because the length of the rope was constant and the boy stays on the axis, the 
rope itself forms the segment we called the Tangent.  Hence, the curve traced by the wagon is the curve 
for which the length of the tangent segment is always equal to the fixed length a.  Perrault named this 
curve the tractrix, and to find an equation for the tractrix became one of the important unsolved 
problems of the late 1600s. 
 
 Another important problem was posed by Florimond de Beaune, (1601-1652) one of the people 
who helped Frans van Schooten (1615-1660) translate Descartes' Geometrie into Latin and then to write 
commentary that helped other scientists understand it  better.  De Beaune asked to find a curve for which 
the subtangent had a fixed length a.  De Beaune did not give this curve a name, but we now know it to 
be an exponential curve. 
 
 Christian Huygens (1629-1695) solved the problem of the tractrix in 1693, and G. W. Leibniz 
(1646-1716) solved de Beaune's problem in 1684 his first paper on calculus, "Nova Methodus pro 
Maximis et Minimis." 
 
 There are two other obvious problems in this same vein, to find curves for which the normal 
segments have a fixed length, and for which the subnormal segments have a fixed length.  Though these 
are both easily found using calculus, it turns out that their solutions do not require calculus, so whoever 
solved them first didn't become famous for their solutions. 
 
 Now we can re-phrase Euler's Problem 1 in the language of the 1600s: to find a curve EM for 
which every tangent segment MV passes a fixed distance a from the origin A.   
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 As usual, Euler begins his solution of the problem by assigning variables.  Again, see Fig. 1.  He 
takes the line AP as his axis, and takes the length AP = x.  The corresponding ordinate is PM = y.   From 
the description of the problem, we know that AV = a, where AV  is perpendicular to the tangent line MV.  
Euler adds calculus by introducing an infinitesimal arc element Mm = ds.  Then the corresponding 
changes in x and y are dx = Pp = Mp and pm = dy, where the segment Mp is taken to be parallel to the 

axis AP.  Moreover, all this makes 2 2 .ds dx dy= +  
 
 Euler plans to use similar triangles, so he needs to build some more triangles.  He introduces a 
new segment, SP, perpendicular at S to the tangent line VM, and a second segment AR, perpendicular to 
SP at R.  Note that this makes a = AV = RS = PS – PR. 
 

We have three similar triangles, ∆PMS, ∆APR and the differential triangle ∆Mmp, and ratios of 
corresponding parts give us 
 

 and .
M PM y d x m AP xdy

PS PR
Mm ds Mm ds
π π⋅ ⋅

= = = =  

Substituting this into our observation that a = PS – PR, we get 

 2 2 .y d x x d y a d s a dx dy− = = +  

Euler tells us that this equation exprimera la nature de la courbe cherchée, "will express the nature of 
the curve being sought."  

 He sets out to solve this problem, squaring both sides and performing a well-choreographed 
sequence of substitutions.  It is messy.  Three pages and seventeen display equations later, Euler leads to 
see that the differential equation has an infinite family of solutions 

 ( ) ( )1
,

2 2
n

y a x a x
n

= + + −  

where n is an arbitrary constant, and the equation also has a singular solution, a family of one, namely  

.xx yy aa+ =  

Readers familiar with differential equations will recognize that it is not a coincidence that the lines in the 
infinite family are the tangent lines to the circle xx + yy = aa. Note that Euler has overlooked the 
vertical line that corresponds to the case n = 0. 
 
 So, Euler has solved the problem, and it was a little bit interesting, but there seems to be nothing 
to suggest the "paradox" mentioned in the title of the article.  We must read on to learn what Euler found 
paradoxical in this problem. 
 
 He continues by offering us an easier way to solve this same problem.  He begins his second 
solution by introducing a new function, p, defined by the equation 

 
.dy pdx=  

 
A modern reader immediately recognizes p as the first derivative, but in Euler's day, the fundamental 
tools of differential calculus were differentials, and when they needed what we now call a derivative 
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function, they had to define it as a quotient of differentials.  The modern concept and notation was 
introduced by Lagrange in 1797.  This definition of p makes  

 
2 2 21ds dx dy dx p= + = +  

 
in general, and it lets us rewrite the equation that "expresses the nature of the curve" as 
 
(1) 1 or 1 .y px a pp y px a pp− = + = + +  
 
Note that they differentials seem to have disappeared here, though they are actually hiding in the 
definition of the variable p. 
 
 Here comes the "paradox."  "[I]nstead of integrating this differential equation, I differentiate it" 
and get 

.
1
apdp

dy pdx xdp
pp

= + +
+

 

 
The "paradox" in this was more dramatic to Euler's readers because in his time, chapters on differential 
equations often bore titles like "On the integration of equations" rather than "On solving differential 
equations."  Differential equations were ones that one resolved by integration, and the word "solving" 
was reserved for easier problems. 
 
 So, now we know what the paradox is.  How does it work?  We have ,dy pdx=  and subtracting 
this from the previous equation gives 

(2)      0 .
1
apdp

xdp
pp

= +
+

 

 
First, divide this by dp (later, we'll need to remember that we divided by dp) and solve for x to get 

(3)      
1
ap

x
pp

= −
+

. 

Then substitute this into equation (1) to get  
 

(4)    1 or .
1 1
app a

y a pp y
pp pp

= − + + =
+ +

 

 
Viewed as a differential equation, equation (4) would take a good deal of work to solve, but viewed in 
conjunction with equation (3), we see a parameterization of the curve being sought in terms of the 
parameter p.  We have 

and .
1 1
ap a

x y
pp pp

= − =
+ +

 

 
Squaring these and adding them together gives 
 

,
1

aapp aa
xx yy aa

pp
+

+ = =
+
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the equation of a circle, which is one of the solutions to the given problem. 
 
 But what about all those other solutions, the infinite family of straight lines?  This method does 
not seem to provide us with them.   But let's take a closer look at equation (2), and recall that we divided 
it by dp.  In doing so, we may overlook solutions corresponding to the cases when dp = 0.  In Euler's 
words, equation (2) also "contains" the solutions dp = 0.  This would mean that p is a constant, and Euler 
chooses to call that constant n.  Substituting p = n into equation (1) gives us the infinite family of lines 
lines,  
 

1 .y nx a nn= + +  
 
 With this, Euler has solved his differential equation by differentiating, rather than by integrating.  
Euler has a good deal more to say about other geometrically inspired problems that also lead to 
"paradoxical" differential equations, but for this column, this one will have to suffice.  I hope that this 
account has whetted the readers' appetites for such problems, because Hieu Nguyen, professor and 
sometime chair of Mathematics at Rowan University in Glassboro, New Jersey and his student, Andrew 
Fabian have translated all of E236 from French into English and made it available through The Euler 
Archive.  They are preparing an article for publication that describes E236 in considerably more depth 
than we have here, and have found a plethora of fascinating insights and new problems.  Hieu Nguyen 
spoke on their results at the 2008 annual meeting of The Euler Society when they met in New York in 
July.  
 

It is part of the magic of mathematics in general and of the works of great mathematicians like 
Euler in particular, that so often there are new things to be found in old mathematics.  Watch for their 
article in the not-too-distant future. 
 
Special thanks to Andrew Fabian for his English translation of E236 and to Hieu Nguyen for drawing this paper and Andrew 
Fabian's translation to my attention. 
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